
Symmetric categorial grammar

Thursday, Part One

Raffaella Bernardi & Michael Moortgat

Contents First Last Prev Next J

Contents

1 The plan for today . 3
2 Scope ambiguity, local . 4

2.1 Independence of lexical solution . 5
2.2 Enforcing surface scope construal 6

3 Local vs. non-local construal . 8
3.1 Sentential complements . 9
3.2 Two solutions . 10
3.3 The effect of RESET . 11

4 Blocking non-local scope construal . 13
5 Like vs. Need: the problem . 14

5.1 Likes vs. Need: CPS solution . 15
5.2 Likes vs. Need: Lifted Term solution 16
5.3 Generalized Coordination: the problem 17
5.4 Remark . 18

6 Comparison: type shifting principles . 22

Contents First Last Prev Next J

1. The plan for today

First part We go through our test suite of scope construal:

• Scope flexibility: local

• Local vs. non-local scope

• Bridge predicates vs. scope islands

• First order vs. higher-order predicates (finds vs. seeks)

• Generalized coordination.

Second part Relations between types: derivability versus similarity. We have a
separate set of slides for this.

Contents First Last Prev Next J

2. Scope ambiguity, local

Everyone teases someone Type uniformity: (s � s) ; np fits both the subject
and the object role. The scope ambiguity arises from the nondeterministic choice
between the subject or object (;L) rule as the last step of the derivation.

...
((s� s) ; np) ◦ (tv ◦ ((s� s) ; np)) −−→ s

(;L)

λc.(T∀U λ〈q, y〉.(T∃U λ〈p, z〉.(y 〈c, λc′.(z 〈c′, λc′′.(TteasesU 〈p, 〈c′′, q〉〉)〉)〉)))
λc.(T∃U λ〈p, z〉.(T∀U λ〈q, y〉.(z 〈c, λc′.(y 〈c′, λc′′.(TteasesU 〈p, 〈c′′, q〉〉)〉)〉)))

Substituting the T·U definitions For q, p we substitute λk.(k x), for y, z the LIFT

combinator. After reduction we obtain

λc.(∀ λx.(∃ λy.(c ((teases y) x))))

λc.(∃ λy.(∀ λx.(c ((teases y) x))))

Contents First Last Prev Next J

2.1. Independence of lexical solution

teasese→e→t
TteasesU−−−−→λ→ b(np\s)/npc

For the lifting of the e → e → t constant, we have considered two solutions,
depending on whether one lexically represents surface scope or inverted scope.

1. TteasesU = λ〈q, 〈c, q′〉〉.(q′ λx.(q λy.(c ((teases y) x))))

2. TteasesU = λ〈q, 〈c, q′〉〉.(q λy.(q′ λx.(c ((teases y) x))))

Under both choices the subterm below

λc.(TteasesU 〈λk.(k y), 〈c, λk.(k x)〉〉)

reduces to
λc.(c (teases y) x)

i.e. our analysis of scope construal is fully determined by the derivational non-
determinism in the choice of the active QP.

Contents First Last Prev Next J

2.2. Enforcing surface scope construal

The class of QP phrases is not uniform in its scopal behaviour. For QP’s allowing
only rigid surface scope construal, we have the type assignment (s � (np ; s)),
instead of (s� s) ; np. Both satisfy the type uniformity requirement.

type uniformity flexibility
s� (np; s) X
(s� s) ; np X X

Example: “Noone noticed anything”

s ` ((((s/np)\s)⊕ (np ; (s � np)))⊕ (np/(s\s)))

λc.(TnooneU λ〈q, y〉.(y 〈c, λc′.(TnoticedU 〈λc′′.(TanythingU λ〈v, q′〉.(v 〈q′, c′′〉)), 〈c′, q〉〉)〉))

Contents First Last Prev Next J

Exercise

The subterm λc′′.(TanythingU λ〈v, q′〉.(v 〈q′, c′′〉)) is the result of the CPS trans-
formation of the proof term corresponding to the lowering of (s � (np ; s)) to
np.

Can you provide an appropriate term for TanythingU defined in terms of ∃(e→t)→t?

Contents First Last Prev Next J

3. Local vs. non-local construal

Molly thinks someone left The ambiguity arises here from the fact that the QP
can non-deterministically select the embedded or the main clause as its scope
domain: local versus non-local scope readings.

1. THINK > SOMEONE [local]

2. SOMEONE > THINK [non-local]

λc.(TthinksU 〈λc′.(T∃U λ〈q, y〉.(y 〈c′, λc′′.(TleftU 〈c′′, q〉)〉)), 〈c, TmU〉〉)

λc.(T∃U λ〈q, y〉.(y 〈c, λc′.(TthinksU 〈λc′′.(TleftU 〈c′′, q〉), 〈c′, TmU〉〉)〉))

Substituting the definitions for T·U, we would like these to reduce to:

λc.(c ((thinks (∃ left)) m))
λc.(∃ λy.(c ((thinks (left y)) m)))

Contents First Last Prev Next J

3.1. Sentential complements

The lexical constant for the verb ’thinks’ is of type ((np\s)/s)′ = t→ (e→ t).

We want to lift this constant to the CBN level:

thinkst→e→t
TthinksU−−−−→λ→ b(np\s)/sc

where

b(np\s)/sc = Rbsc × bivc
= Rbsc × (bsc ×Rbnpc)

Contents First Last Prev Next J

3.2. Two solutions

thinkst→e→t
TthinksU−−−−→λ→ b(np\s)/sc

The solution for this type transition is not unique. Let us compare the effect of
the following two possibilities on scope construal.

1. TthinkU = λ〈p, 〈c, q〉〉.(p λv.(q λx.(c ((thinks v) x))))

2. TthinkU = λ〈p, 〈c, q〉〉.(q λx.(c ((thinks (p ID)) x)))

= λ〈p, 〈c, q〉〉.(q λx.((RESET p) λv.(c ((thinks v) x))))

where RESET = λmλc.(c (m ID))

(Ct → (Kt → t)).

Contents First Last Prev Next J

3.3. The effect of RESET

TthinkU = λ〈p, 〈c, q〉〉.(q λx.((RESET p) λv.(c ((thinks v) x))))

= λ〈p, 〈c, q〉〉.(q λx.((λm.λc′.c′(m ID)) p) λv.(c ((thinks v) x)))

= λ〈p, 〈c, q〉〉.(q λx.((λc′.c′ (p ID)) λv.(c ((thinks v) x))))

= λ〈p, 〈c, q〉〉.(q λx.((λv.(c ((thinks v) x))) (p ID)))

= λ〈p, 〈c, q〉〉.(q λx.((c ((thinks (p ID) x)))))

Contents First Last Prev Next J

Scope sieves

CPS image of the proofs:

λc.(TthinksU 〈λc′.(T∃U λ〈q, y〉.(y 〈c′, λc′′.(TleftU 〈c′′, q〉)〉)), 〈c, TmU〉〉)

λc.(T∃U λ〈q, y〉.(y 〈c, λc′.(TthinksU 〈λc′′.(TleftU 〈c′′, q〉), 〈c′, TmU〉〉)〉))

Lexical options:

1. TthinkU = λ〈p, 〈c, q〉〉.(p λv.(q λx.(c ((thinks v) x))))

2. = λ〈p, 〈c, q〉〉.(q λx.(c ((thinks (p ID)) x)))

Comparison Comparing the interaction with embedded QP for “Molly thinks
someone left” we observe

• the sequent has two proofs: local, non-local construal

• solution 2. associates them with the required readings

• solution 1. transforms the local reading to the non-local one: it turns the
predicate into a scope sieve

Contents First Last Prev Next J

4. Blocking non-local scope construal

Some predicates force the QP to have only the local scope reading:

• Molly thinks someone left

1. THINK > SOMEONE [Local]

2. SOMEONE > THINK [Non-local]

• Molly shouts someone left

1. SHOUT > SOMEONE [Local]

2. ∗SOMEONE > SHOUT

How can we capture this difference?

Friday we will present on going work on this.

Contents First Last Prev Next J

5. Like vs. Need: the problem

• Everyone likes someone

1. SOMEONE > EVERYONE

2. EVERYONE > SOMEONE

• Everyone needs someone.

1. SOMEONE > EVERYONE > NEED

2. EVERYONE > SOMEONE > NEED

3. EVERYONE > NEED > SOMEONE

“Like”: (np\s)/np vs. “Need”: (np\s)/(s/(np\s))

Contents First Last Prev Next J

5.1. Likes vs. Need: CPS solution

a. λc′.(TneedsU 〈λ〈p, v〉.(p 〈v, q〉), 〈c′, q′〉〉) (= M : Cs)

1. λc.(TsomebodyU λ〈q, y〉.(TeveryoneU λ〈q′, y′〉.(y 〈c, λc′.(y′ 〈c′,M s〉))))
2. λc.(TeveryoneU λ〈q′, y′〉.(TsomebodyU λ〈q, y〉.(y′ 〈c, λc′.(y 〈c′,M s))))

b. λc′.(TneedsU 〈λ〈p, v〉.(TsomebodyU λ〈q, y〉.(y 〈v, λv′.(p 〈v′, q〉)〉)), 〈c′, q′〉〉)〉
(= N : Cs)

3. λc.(TeveryoneU λ〈q′, y′〉.(y′ 〈c,N s))

With lexical substitution, we want these to reduce to:

1. λc.(∃ λy.(∀ λx.(c ((needs λk.(k y)) x))))

2. λc.(∀ λx.(∃ λy.(c ((needs λk.(k y)) x))))

3. λc.(∀ λx.(c ((needs ∃) x)))

Contents First Last Prev Next J

5.2. Likes vs. Need: Lifted Term solution

Given by Arno Bastenhof, BSc Thesis, July 2007, Utrecht University.

The lexical constant for ’needs’ is of type (np\s)/(s/(np\s)) = ((e → t) →
t)→ (e→ t).

We want to lift this constant to the CBN level:

needs((e→t)→t)→(e→t) TneedsU−−−−→λ→ b(np\s)/(s/(np\s))c

where

b(np\s)/(s/(np\s))c = RRbs/(np\s)c×(bsc×Rbnpc)

Rbs/(np\s)c = RRbivc×bsc

Rbivc = Rbsc×R
bnpc

TneedU = λ〈p, 〈c, q〉〉.(q λx.(c (need λk.(p 〈λ〈c′, q′〉.q′ (λy.c′ (k y)), λy.y〉) x)))

Contents First Last Prev Next J

5.3. Generalized Coordination: the problem

John sought and found someone

1. SOMEONE > SOUGHT & FOUND

2. SOUGHT & FOUND > SOMEONE

3. ∗SOUGHT > SOMEONE > FOUND

4. ∗FOUND > SOMEONE > SOUGHT

Contents First Last Prev Next J

5.4. Remark

First, note that

(a) np ` s/(np\s) and (b) (s� s) ; np ` s/(np\s).

....
np ◦ np\s −−→ s� s ◦ s

(s� s) ; np ◦ np\s −−→ s

(s� s) ; np ◦ np\s −−→ s

(s� s) ; np −−→ s/(np\s)

Recall, A/B ` A/C, if C ` B.

(a) iv/((s/(np\s)))| {z }
TVseek

` iv/np| {z }
TVfind

and (b) iv/((s/(np\s)))| {z }
TVseek

` iv/((s� s) ; np)| {z }
TV

Contents First Last Prev Next J

Furthermore, note that:

(c) (np\s)/np| {z }
TVfind

` (np\s)/(((s� s) ; np))| {z }
TV

....
np ◦ ((np\s)/np ◦ np) −−→ s� s ◦ s

np ◦ ((np\s)/np ◦ ((s� s) ; np)) −−→ s

np ◦ ((np\s)/np ◦ (((s� s) ; np))) −−→ s

(np\s)/np ◦ ((s� s) ; np) −−→ np\s
(np\s)/np −−→ (np\s)/(((s� s) ; np))

Hence, both TVfind and TVseek derive TV .

Contents First Last Prev Next J

Summary: (a) TVseek ` TVfind, (b) TVseek ` TV , and (c) TVfind ` TV .

Let, (X\X)/X be the polymorphic type assigned to conjunction. It can be-
come either (TVfind\TVfind)/TVfind (abb. CONJfind) or, (TV \TV)/TV (abb.
CONJ)

TVseek ◦ (CONJ ◦ TVfind) ` TV TVseek ◦ (CONJ ◦ TVfind) ` TVfind

Recall,

Γ[C] −−→ A

Γ[B] −−→ A

TV ◦ ((TV \TV)/TV ◦ TV) −−→ TV

TVseek ◦ ((TV \TV)/TV ◦ TVfind) −−→ TV
since (b) and (c)

TVfind ◦ (TVfind\TVfind)/TVfind ◦ TVfind) −−→ TVfind
TVseek ◦ (TVfind\TVfind)/TVfind ◦ TVfind) −−→ TVfind

since (a)

Contents First Last Prev Next J

Recall, “John sought and found someone” has two readings:

(a) SOMEONE > SOUGHT > FOUND (b) SOUGHT & FOUND > SOME-
ONE

TVfind = iv/np vs. TV = iv/((s� s) ; np)

NP|{z}
john

◦((TVseek| {z }
sought

◦(CONJ| {z }
and

◦TVfind| {z }
found

))

| {z }
TVfind

◦ QP|{z}
someone

) ` s

corresponds to (a).

NP|{z}
john

◦((TVseek| {z }
sought

◦(CONJ| {z }
and

◦TVfind| {z }
found

))

| {z }
TV

◦ QP|{z}
someone

) ` s

corresponds to (b).

Contents First Last Prev Next J

6. Comparison: type shifting principles

We compare our approach with Hendriks’ (1993).

Flexible Montague Grammar

• Syntax: slash elimination only (function application)

• The mapping from syntactic to semantic types is weakened to a relation

• To resolve type mismatches for application, a set of type-shifting princi-
ples is postulated: Value Raising (VR), Argument Lowering (AL), Argument
Raising (AR).

LG

• Syntax: rules of use + rules of proof for all connectives.

• The mappings b·c, d·e from syntactic types to their CPS interpretations are
functional.

• The type-shifting principles are derived rules.

Contents First Last Prev Next J

Deriving VR, AL, AR in LG

Value Raising, Argument Lowering These principles are valid already in NL, the
pure residuation logic. By Monotonicity, if A→ B/(A\B), then

A/C → (B/(A\B))/C (B/(A\B))\C → A\C

An example: (np\s)/(s/(np\s))→ (np\s)/np for a de re reading of ’seek’.

Argument Raising AR is invalid in NL. But the version for the quantifier type
(s� s) ; np is derivable in LG. For example:

(np\s)/np→ (np\s)/((s� s) ; np)

Contents First Last Prev Next J

	The plan for today
	Scope ambiguity, local
	Independence of lexical solution
	Enforcing surface scope construal

	Local vs. non-local construal
	Sentential complements
	Two solutions
	The effect of RESET

	Blocking non-local scope construal
	Like vs. Need: the problem
	Likes vs. Need: CPS solution
	Likes vs. Need: Lifted Term solution
	Generalized Coordination: the problem
	Remark

	Comparison: type shifting principles

