
Symmetric categorial grammar

Monday

Raffaella Bernardi & Michael Moortgat

Contents First Last Prev Next J

Abstract

We study an extended version of the categorial base logic. In addition to the Lambek
connectives (product, left and right division), it has a family of dual residuated con-
nectives (coproduct, left and right difference). In linear logic, these are related by De
Morgan duality. For linguistic purposes, a more subtle interaction is required, preserving
the individual characteristics of the operators involved. The general framework of Grishin
(1983) provides such interaction principles.

We investigate the relation of type similarity (aka conjoinability) for the resulting system
LG (bi-Lambek calculus with Grishin’s Type IV interactions). We show that LG similarity
can be characterized in terms of an interpretation in the free Abelian group generated by
the atomic types. This means that with respect to similarity, LG recovers the expressivity
of LP (Pentus 1993), without loss of structural discrimination.

We discuss how the similarity relation can be used in the analysis of phenomena beyond
the reach of NL and L.

Joint work with Mati Pentus (Moscow University).

Contents First Last Prev Next J

Contents

1 Plan for today . 5
2 The argument . 6
3 Type equivalence . 7
4 Solutions for the diamond property . 8
5 Computing the meets and joins . 9
6 Models . 10
7 Beyond NL . 11
8 Recovering LP similarity in LG . 12
9 Joins for rotation variants . 13
10 Example . 14
11 Deriving the join . 15
12 Neutral types . 16
13 Symmetry . 17
14 Linguistic application . 18
15 Extraction . 19
16 Chameleon words . 20
17 Meet type for ∼ . 21

Contents First Last Prev Next J

18 Dutch crossed dependencies . 22
19 Crossed dependencies (cont’d) . 23
20 Comparison: Moot 2007. 24
21 What have you learned today . 25
22 More to Explore . 26

Contents First Last Prev Next J

1. Plan for today

I Two relations between types: derivability, similarity

I Characterizing LG similarity

I Linguistic applications:

. long distance dependencies

. crossed dependencies

I Comparison: LTAG embedding (Moot 2007)

Contents First Last Prev Next J

2. The argument

Type similarity (Lambek 1958, notation A ∼ B) is the reflexive, symmetric,
transitive closure of the derivability relation.

Example (subject GQ) s/(np\s) ∼ ((np\s)/np)\(np\s) (object GQ).

I For associative and/or commutative Lambek calculi (L, LP), expressivity wrt
∼ is inversely proportional to structural discrimination.

I In the symmetric Lambek-Grishin calculus LG, the expressivity of LP is ob-
tained in a structure-preserving way.

Contents First Last Prev Next J

3. Type equivalence

Definition

A ∼ B iff ∃ C1 . . . Cn s.t. C1 = A, Cn = B and ∀ i<n, Ci ` Ci+1 or Ci+1 ` Ci

Diamond property A ∼ B iff one of the following equivalent statements holds

I ∃C such that A ` C and B ` C (join)

I ∃D such that D ` A and D ` B (meet)

D

 A
AA

AA
AA

~~}}
}}

}}
}

A

 A
AA

AA
AA

B

~~}}
}}

}}
}

C

Contents First Last Prev Next J

4. Solutions for the diamond property

Lambek (1958) has a solution covering NL as well as L. The choice between
lifting/lowering creates the desired derivational ambiguity. |C| = |D| = 7.

D = (A/((C/C)\C))⊗ ((C/C)\B), C = (A⊗ (D\D))/(B\(D⊗ (D\D)))

For L, one has a simpler solution with |C| = |D| = 5 (Pentus 93). The possibility
of rebracketing the types for D and C is what makes this solution work.

D = (A/C)⊗ C ⊗ (C\B), C = (D/A)\D/(B\D)

In LG, we recover a length 5 solution, relying on the Grishin interactions.

D = (A/C)⊗ (C � (B ; C)), C = ((D/B)\D)⊕ (D ; A)

Remark (A/−)⊗ (−� (B ;−))
∞←→ ((−/B)\−)⊕ (−; A).

Contents First Last Prev Next J

5. Computing the meets and joins

Meet Given join c, d is a meet type for a and b:

a ` a

b ` c c ` c
(c ; c) ` (b ; c)

;

c ` (c ⊕ (b ; c))
�′

(c � (b ; c)) ` c
�

(a/c) ` (a/(c � (b ; c)))
/

((a/c)⊗ (c � (b ; c)))| {z }
d

` a
�′

b ` b a ` c
(b ; a) ` (b ; c)

;

a ` (b ⊕ (b ; c))
�′

c ` c

(a/c) ` ((b ⊕ (b ; c))/c)
/

((a/c)⊗ c) ` (b ⊕ (b ; c))
�′

(((a/c)⊗ c)� (b ; c)) ` b
�

((a/c)⊗ (c � (b ; c)))| {z }
d

` b
=

Join Given meet d, c is a join type for a and b. Take the ∞ image of the above.

a ` ((d/b)\d)⊕ (d ; a)| {z }
c

b ` ((d/b)\d)⊕ (d ; a)| {z }
c

Contents First Last Prev Next J

6. Models

Quasigroups (Foret 03) In NL, type equivalence coincides with equality in the
free quasigroup generated by the atomic types, i.e. A ∼ B iff JAK =FQG JBK.

Quasigroup equations A quasigroup is a set equiped with operations /, ·, \ satis-
fying the equations below.

(x/y) · y = x y · (y\x) = x
(x · y)/y = x y\(y · x) = x

Quasigroup interpretation JpK = p, JA/BK = JAK/JBK, JB\AK = JBK\JAK,
JA⊗BK = JAK · JBK.

Groups (Pentus 93) In L ∼ coincides with equality of an interpretation of types
in the free group generated by the atomic types (free Abelian group for LP).

Group interpretation JpK = p, JA ⊗ BK = JAK · JBK, JA/BK = JAK · JBK−1,
JB\AK = JBK−1 · JAK.

Contents First Last Prev Next J

7. Beyond NL

Restructuring In NL, (a\b)/c and a\(b/c) are incomparable since

J(a\b)/cK 6=FQG Ja\(b/c)K

In L, these types are comparable as a result of global ⊗ associativity.

In LG, (a\b)/c ∼ a\(b/c), this time without ⊗ associativity assumptions.

Reordering In LP, a/b ∼ b\a as a result of global ⊗ commutativity. In LG, one
obtains this similarity without ⊗ commutativity assumptions.

Contents First Last Prev Next J

8. Recovering LP similarity in LG

Theorem In LG, the following notion of type equivalence obtains:

A ∼ B iff JAK =FAG JBK

where =FAG is equality in the free Abelian group generated by Atm ∪ {�}.

Proof

I We prove this first for the Frm(/,⊗, \) fragment (hence, by arrow reversal,
also for Frm(�,⊕, ;).

I For the full language, we extend J·K to take operator balance into account.

Contents First Last Prev Next J

9. Joins for rotation variants

Rotation variants Call ρ variants slash types with the same head, and the same
arguments selected with equal directionality. E.g. (with head b at depth 3):

((a\b)/c)/d ((a\b)/d)/c
(a\(b/c))/d (a\(b/d))/c
a\((b/c)/d) a\((b/d)/c)

Computing joins for ρ variants The following algorithm shows that ρ variants are
∼ relatives. Step 1. Using co-application, expand A◦ to a ⊕ formula with yield
C1 . . . Cn where n = δ(A):

(. . . (A◦ ⊕ (A◦ ; A◦))⊕ · · · ⊕ (A◦ ; A◦)| {z }
n−1 times

. . .)

Step 2. Divide the factors Ci by the arguments of A◦ in some fixed order.

Contents First Last Prev Next J

10. Example

We compute the join C for A = (a\b)/c and B = a\(b/c) according to the
above recipe. A◦ = B◦ = b. δ(A) = δ(B) = 2.

C = (a\b)⊕ ((b ; b)/c)

By the diamond property these types then also have a meet D.

D = (A/C)⊗ (C � (B ; C))

Without abbreviations, the solution for D is . . .

(((a\b)/c)/((a\b)⊕ ((b ; b)/c)))⊗ (((a\b)⊕ ((b ; b)/c))� ((a\(b/c)) ; ((a\b)⊕ ((b ; b)/c))))

Contents First Last Prev Next J

11. Deriving the join

a ` a

b ` b b ` b

(b ; b) ` (b ; b)
;

b ` (b ⊕ (b ; b))
�′

(a\b) ` (a\(b ⊕ (b ; b)))
\

(a ⊗ (a\b)) ` (b ⊕ (b ; b))
�′

((a ⊗ (a\b))� (b ; b)) ` b
�

(a ⊗ ((a\b)� (b ; b))) ` b
=

((a\b)� (b ; b)) ` (a\b)
�

(a\b) ` ((a\b)⊕ (b ; b))
�′

c ` c

((a\b)/c) ` (((a\b)⊕ (b ; b))/c)
/

(((a\b)/c)⊗ c) ` ((a\b)⊕ (b ; b))
�′

((a\b) ; (((a\b)/c)⊗ c)) ` (b ; b)
�

(((a\b) ; ((a\b)/c))⊗ c) ` (b ; b)
<

((a\b) ; ((a\b)/c)) ` ((b ; b)/c)
�

((a\b)/c) ` ((a\b)⊕ ((b ; b)/c))
�′

a ` a

b ` b

b ` b c ` c

(b/c) ` (b/c)
/

((b/c)⊗ c) ` b
�′

(b ; ((b/c)⊗ c)) ` (b ; b)
;

((b ; (b/c))⊗ c) ` (b ; b)
<

(b ; (b/c)) ` ((b ; b)/c)
�

(b/c) ` (b ⊕ ((b ; b)/c))
�′

(a\(b/c)) ` (a\(b ⊕ ((b ; b)/c)))
\

(a ⊗ (a\(b/c))) ` (b ⊕ ((b ; b)/c))
�′

((a ⊗ (a\(b/c)))� ((b ; b)/c)) ` b
�

(a ⊗ ((a\(b/c))� ((b ; b)/c))) ` b
=

((a\(b/c))� ((b ; b)/c)) ` (a\b)
�

(a\(b/c)) ` ((a\b)⊕ ((b ; b)/c))
�′

Contents First Last Prev Next J

12. Neutral types

As in L, for arbitrary types A, B we have A\A ∼ B/B.

I Join type for L: A\((A⊗B)/B) (Pentus 1993)

I Join type for LG: (A\((A⊗B)�B))⊕ (B/B)

The LG join is derived from the L formula by expanding the head and dividing
by A, B (cf ρ variants):

(expand) (A⊗B) ` ((A⊗B)�B)⊕B
(divide) A\((A⊗B)/B) ` (A\((A⊗B)�B))⊕ (B/B)

Contents First Last Prev Next J

13. Symmetry

As in LP, for arbitrary types A, B we have B\A ∼ A/B. This time, we provide
a meet type, i.e. an X such that X ` B\A and X ` A/B, which by Res means

B ⊗X ` A and X ⊗B ` A

Let us put X := Y � Z and solve for

B ⊗ (Y � Z) ` A and (Y � Z)⊗B ` A

which by Grishin mixed associativity or commutativity follows from

B ⊗ Y ` A⊕ Z and Y ⊗B ` A⊕ Z

Solution Z := (A ; B); Y the meet for C the join of B\B and B/B, i.e.

Y := ((b/b)/C)⊗ (C � ((b\b) ; C))

C := ((b\((b ⊗ b)� b))⊕ (b/b)))

Contents First Last Prev Next J

14. Linguistic application

LG can analyse non-cf phenomena which, in the asymmetric Lambek calculi,
require postulates that violate structure-preservation. Examples:

I Moortgat GEOCAL’06: extraction (local, and non-local via bridge predi-
cates); crossed dependencies

I Moot 2007: copy language, counting, crossed dep’s via LTAG simulation

The ∼ relation can be used to lexically encapsulate derivational ambiguity:

I For types satisfying A ∼ B, lexically assign a meet type D.

I Depending on the context, D will derivationally behave as A or B

I Contrast: non-derivational meets/joins (∩,∪, Lam61, Kanazawa 92, &c)

Below an analysis of long distance filler-gap dependencies, combining the tech-
niques of MM 06 and Moot 07.

Contents First Last Prev Next J

15. Extraction

Consider relative clauses. In NL, subject extraction is available if one assigns the
type (n\n)/(np\s) to the relative pronoun.

. . . song which irritates Molly

For object extraction, the type (n\n)/(s/np) is useless:

. . . song which Molly (detests | dedicated to Leopold)

I to reach the object of a simple transitive verb (np\s)/np, one would need
associativity;

I to reach the non-peripheral object of a dative verb ((np\s)/pp)/np, one also
needs a form of reordering.

Challenge Can we use ∼ to simulate ♦ controlled extraction for a relpro assign-
ment (n\n)/(s/♦2np) ?

Contents First Last Prev Next J

16. Chameleon words

Strategy (First try) To potential gap selectors, we assign an LG type from which
the original Lambek type is derivable.

preposition (pp� (pp/np)) ; ((pp/np)⊗ np)

transitive verb ((np\s)� ((np\s)/np)) ; (((np\s)/np)⊗ np)

(A� (A/np)) ; ((A/np)⊗ np)

Derivational behaviour The LG assignment adapts to its derivational context:

I Gap-free context: lowering to A/np since �, ; are dual Galois connected:

(A�B) ; C ` B if C ` A

I In the presence of a gap, a saturated phrase (A/np) ⊗ np is left in the ⊗
context whereas A� (A/np) is sent to the rhs

Contents First Last Prev Next J

17. Meet type for ∼
Let us write A(B) for (A� (A/B)) ; ((A/B)⊗B). For the clause “which Molly
thinks of highly” we now have the following schematic situation:

sz }| {
np iv/pp pp/np np iv\iv ` (pp� (pp/np)) (s/np)

np iv/pp pp pp(np)ppiv\iv ` (pp� (pp/np)) s/np n\n ` n\n
(n\n)/(s/np) np iv/pp pp(np) iv\iv ` n\n

The derivation can proceed if we replace pp � (pp/np) in the pp(np) lexical as-
signment to prepositions by a meet type D for the similarity pair below:

pp� (pp/np) ∼ s� (s/np)

in general: A� (A/B) ∼ C � (C/B)

Exercise Compute a small type for D.

Contents First Last Prev Next J

18. Dutch crossed dependencies

Pattern ‘(dat Jan) boeken wil lezen’ with the order object–modal auxiliary–
transitive infinitive

⊗

CC
CC

CC
CC

||
||

||
||

c ⊗

AA
AA

AA
AA

||
||

||
||

a/b c\b

Challenge As with extraction, there is a double challenge:

I one wants to allow the transitive infinitive c\b to ‘see’ its direct object c
across the intervening modal auxiliary a/b;

I one has to rule out the ungrammatical order (a/b)⊗ (c⊗ (c\b)) which with
the indicated types would make b derivable.

Contents First Last Prev Next J

19. Crossed dependencies (cont’d)

To bring the ∼ strategy into play, note that

c\b
(lifting)
∼ c\((a/b)\a)

(rotation)
∼ (a/b)\(c\a)

For the original c\b and the rotated (a/b)\(c\a) we have join C and meet D:

C = ((a/b)\a)⊕ (c\(a ; a))

D = ((c\b)/C)⊗ (C � (((a/b)\(c\a)) ; C))

To make the ungrammatical order modal auxiliary–object–transitive infinitive un-
derivable, we use modal decoration. We change the type of the modal auxiliary
to a/♦2b, and modify D accordingly, marking the rotated argument:

D′ = ((c\b)/C)⊗ (C � (((a/♦2b)\(c\a)) ; C))

The join type C can remain as it was since

(a/♦2b)\(c\a) ` ((a/b)\a)⊕ (c\(a ; a))

Contents First Last Prev Next J

20. Comparison: Moot 2007

As an alternative to the ∼ analysis of crossed dependencies, we look at the
simulation of an LTAG analysis proposed in Moot (2007).

Type assignments We write v′ for (v/i)⊗ i (or ♦2v), so that v′ → v.

de nijlpaarden np
a zag (saw) (v � (np\(np\s))) ; v′

b helpen (help) v\((v � (np\v′)) ; v′)
c voeren (feed) v\((v � (np\v′)) ; v′)

Key & lock The assignments enforce a rule application order:

I before making ; of (a) active, two np have to be sent to the rhs

I we can unlock (b) with v′ → v

I before making ; of (b) active, a np has to be sent to the rhs

I & c . . .

Contents First Last Prev Next J

21. What have you learned today?

I type similarity is a measure for the derivational strength of a logic

I in LG we find the expressivity of LP

I this expressivity is obtained in a structure-preserving way

I meet/join types for ∼ can be used to lexically encapsulate derivational am-
biguities

I LTAG analyses can be simulated in LG

Open question Complexity: LG∅ has a polynomial recognition problem (Capelletti
07), LG with Class IV interactions recognizes non-cf patterns — where exactly
does it fit in the complexity hierarchy?

Contents First Last Prev Next J

22. More to Explore

I Chapter 6 of the course materials is the Moortgat & Pentus (2007) paper
for FG 2007.

I Pentus (1993) is to be found at http://lpcs.math.msu.su/∼pentus/, with
many other nice things.

I Annie Foret, in a number of papers, has investigated the use of ∼ in connec-
tion with formal learning theory for categorial grammars, see her publications
at http://www.irisa.fr/prive/foret/

Contents First Last Prev Next J

http://lpcs.math.msu.su/~pentus/
http://www.irisa.fr/prive/foret/

	Plan for today
	The argument
	Type equivalence
	Solutions for the diamond property
	Computing the meets and joins
	Models
	Beyond NL
	Recovering LP similarity in LG
	Joins for rotation variants
	Example
	Deriving the join
	Neutral types
	Symmetry
	Linguistic application
	Extraction
	Chameleon words
	Meet type for
	Dutch crossed dependencies
	Crossed dependencies (cont'd)
	Comparison: Moot 2007
	What have you learned today
	More to Explore

