Symmetric categorial grammar
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Abstract

We study unary residuated and Galois connected operators in the symmetric setting of
Lambek-Grishin calculus.
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Plan for today

Residuation and Galois connections in logic and algebra
Order-preserving and order-reversing modalities
Decidability

Completeness for the relational semantics
Curry-Howard interpretation (work in progress .. .)

Linguistic applications: islands and scope delimitation
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2. Residuation and Galois connections

Dunn 1999 gives a nice overview of the role played by residuation and Galois
connection in algebra and logic.

Ordered sets (X, <), (Y, <) with mappings

f: X —Y g:Yy —X

The defining biconditionals for residuated pairs (rp), Galois connected pairs (gc),
dual rp (drp) and dual Galois gc (dgc) are given below.

rp fz<'y iff x<gy
dp  y<' fo iff gy<wz
gc  y<'fx iff z<gy
dge  fx <"y iff gy<uwz
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3. Vocabulary

iff r<gy | gy<x
Jr <y rp dcg
y < fx gc drp
A= O0A | OA | A | 14
04 | A" | HA | eA
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4. Monotonicity, compositions

An equivalent characterization of (d)rp, (d)gc is in terms of the tonicity properties

of f, g and their compositions.

Compositions:

1x <gf|gf <1x
fg < 1y rp dgc
ly <" fg gc drp

Toniciy:

» (d)rp: f, g are order-preserving (¢, LI, §)

» (d)gc: f,g are order-reversing (%, 0, 1, 1)
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5. Compare: binary and unary operators

Bol' — A[A] (T) — A[A]
r— a4 N = apa OR

A — B T[A] — A’ I'[A] — A
racB\ A — & O Froay— a (BY)

B®B\A< A OOA <A
I'[D] — A/ )
—_— <
T[] N if C <D
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6. (Dual) residuation principles

For decidable proof search, we extend our combinator system with the shifting
and monotonicity rules for the unary operator cases.
The unary residuated ¢, [] and their duals have the same rules: a cobox is a

diamond, a codiamond a box. Cf (F) versus (P) in temporal logic. Cf Anna
Chernilovskaya, Reader Ch 5.

f:0A— B f: A — B
rp f:A— B drp f: A— EB

Monotonicity principles

A — B A — B A— B A— B
OA — OB ¢A — B A —- B HA - EB

Symmetries

(A = &(47) A= = WA7)
(0A)> = W(A%) (HA)y>* = &(A%)
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7. Grishin interaction principles

The Grishin interactions extend to the unary vocabulary.

$ARB—4(AQB) AR B — (A2 B) O#A— $0A

Equivalently, there are the dual forms:

0(A@&B)—U0OAeB [OA&B) —AeOB [lA— BIA

For decidable proof search, we put them in rule form (compiling away the use of
transitivity):

¢(A®B)—C ¢(A®B)—C ) ¢OA > B

¢AG B - C A2 6B = C CeA = B I3
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8. (Dual) Galois connected operations

Galois principles:

f:B— A°
g f:A—'B

f:A— B

0f:0B 04
Dual Galois principles:

f:Bl— A
ldg f:'A — B

f:A— B
lf.1Bp 514

f:B—"%A
rg f: A— B°

f:A— B
f0: B — A°

f:'B— A
rdg f: Al - B

f:A— B
fl: B! - A!
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9. Truth conditions, completeness

z - QA iff Jy.Rexy N ylF A
zIFOA iff Vy.Royr =yl A
z - @A iff Jy.Rexy N ylF A
zI-F WA iff Vy.Reyr=1yl- A

m Ik A iff Vm/.(Rymm/ = m/ ¥ A)
mIE%A iff Vm/.(Rym'm = m/ ¥ A)
m k1A iff Im (Rimm/ A m/ If A)
m Ik Al iff Im/ (Rim'm A m/ F A)

Completeness Unary extensions of relational completeness are in Kurtonina &
Moortgat (rp), Chernilovskaya 07 (drp), Areces, Bernardi & Moortgat 01 (gc).
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10. Curry Howard interpretation

As an example of the requirements to be met, we work out the sequent term
labeling for L.

Extending the term language

AM € Term4 if M e Term”
VK € CoTerm™ if K € CoTerm”

Sequent rules In addition to the binary punctuation (— o —) (structural counter-
part of ® in the antecedent), we now have angular brackets (—) as structural
counterpart of ¢.

M K
<rz = AL g T[A] — A o
r M, AO4] roay -5 a
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11. [ equivalence
The two faces of identity give rise to 8 and n equivalences. Consider (L13) first.
(4B) ("M xVK) — (M * K)

(0JB) is the image of the following transformation on sequent proofs.

M, K
<FZMA (HR) 4 _—JKA (BL) M K
I — [JA (AM*VI<(|):|A> — A (Cut) <F> ——)(;*ﬁ)——) A (Cut)
(T ~ (') ——= A
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12. 7 equivalence

(4R) "M *x'K) — (MxK)
(On) x — Mpa.(zxVa)

(Cn) is the image of the following proof transformation.

A——V>O¢:A (OL)
(OA) S a: A

v (=)
(@ Oy Lol )
v 0A 204 ~ .04 @) 4y

Next step CPS interpretation. Before turning to it, let us review the linguistic
use of the modalities we have in mind.
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13. Delimiting control

Island decoration For non-bridge predicates, we decorate the complement sen-
tence with co-box. Recall that ¢ doesn't block an embedded QP (s @ s) © np
to take non-local scope: ¢ is transparent for the Grishin interactions.

(bridge) thinks (np\s)/s
(non-bridge) thonks (np\s)/#s

The modal decoration on the complement sentence triggers the matching struc-
tural decoration, as in the example below, where Subj could be a simple noun
phrase or a QP. In the latter case, ¢ blocks non-local scope.

np @ (((np\s)/#s) © #(Subj @ (np\s))) — s

Challenge Can we make sense of this semantically? In the cbn setting, this means
giving a CPS interpretation for ¢>° = [.
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14. Derivation

szt s6 mps - npy
(s3 @ npa) - (s6 @ nps)
s3 F ((s¢ @ nps) @ npa) > s7 sy mpr F npo
Oss = U((se @ nps) @ npa) (s7 @ npo) F (s2 @ npr)
(L((s6 @ nps) ® npsa) © (s7 @ npo)) F (Lsz © (52 @ np1))
(s7 @ npo) F (L((s6 @ nps) @ nps) & (Uss © (s2 @ np1)))
s7 = (H((s¢ @ nps) @ nps) & (Hs3s © (s2 @ np1))) € npo)

/

Yyaio0©

/

The CPS image of this proof is the term below.

Ac.(|[thonks]|| (Ak.(k Ad.(| left] (¢, |[leopold]|})), {(c, | molly]|]}})

After lexical substitution, we would like to associate the derivation with the fol-
lowing interpretation.

Ac.(c ((thonks Ac'.(¢" (left leopold)) molly)
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15. CPS interpretation: types

Types For the domain of interpretation of [ 1A, we consider two candidates.

(J[) |_|:|A-| = RR(AWXRRxRR
= ([A] = (R—R) = R) = (R~ ) = R)
(i) |_|:|A-| RRM]

R I
E
l
=
l
=

Both options take [A] to a lifted level: R in the case of (), computation of R
in the case of ().
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16. CPS interpretation: terms
Consider first the (1) option where [[JA] = ([A] — Cx) — Ch.
OA  ["M] = Me.(k Mo, &).([M] Az.(m (z,6)))  M: A
OA  [VK] = Mu(h { Mz, ¢).(c ([K] 2)),1D ) K:A
Remark [YK] is the reverse of the SHIFT construct.

SHIFT ((Va — Cg) — Cr) — (K4 — R)
SWAP SHIFT K4 — (((Vua — Cgr) — Cr) — R)

With this interpretation (LJ3) is satisfied at the CPS level. But (n) is not ...

("M« "K)] = (["M] ["K]) = (IM] [KT)
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17. CPS interpretation (cont’d)
The (1) option maps an A value to an A computation ([A] — R) — R.
We give the CPS interpretation for the monotonicity rule.
f:A— B
f°:0A—-0OB

[(f7)18 = Me(k {[f7] Ay.(8 Ac.(c 9))})
And for the Auji proof terms.
A ["M] = Ah.([M] Az.(h Ac.(c x))) M: A
A [VK| = M\k.(k [K]) K:A

Contents First Last Prev Next <«



18. Non-bridge predicates: lexical semantics

Recall the proof term for "Molly thonks Leopold left’ (non-bridge predicate 'thonks’).

Ac.(|[thonks]|| (Ak.(k Al.(| left]] (¢, |[leopold]]})), {(c, | molly]]}})

The complement is a [ls computation, i.e. ((|s] — R) — R) — R, which lowers
to [s] — R (s computation) by the combinator below.

LOWER (((A—B)—B)—-C)— (A— ()
AhAv.(h Ac.(c v))

We then have the following lexical recipe for the non-bridge predicate, resulting
in the desired reduced reading.

[thonks]] = X(p,{c,q)).(¢ Ax.(c ((thonks (LOWER p)) x)))
Ac.(c ((thonks Ad'.(c" (left leopold))) molly))
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19. Homework

In ongoing work we pursue this line further to better understand the use of modal
decoration in NL semantics (as in Bernardi & Szabolcsi 2007).

» What is the semantic import of a given modal decoration?

» What is the linguistic significance of derivational ambiguities among such
decorations?

Example The type transition OOp — O$OOp has two distinct readings.

p—p p—p
Op — Op Op — Op
p — UOp Uop — UOp

Op — O0Op  O0Op — OOOp
Hop — UOUOp Udp — LOUOP

((rp((1,))9)= rp((((1)*)))
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20. More to Explore

Apart from Chapter 5 of the Course Materials, we would like to recommend the
following two references for systematic exploration of the landscape of possible
type-forming operations.

» Rajeev Goré (1998) gives a comprehensive picture of substructural logics
from the Display Logic perspective. There is a link on our References page.

» Richard Moot (2007) 'Proof Nets for Display Logics' develops the theory
of Proof Nets for these systems, with a discussion of LTAG simulation via
the Grishin interaction postulates. We hope to see his paper on these pages
soon!
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21. Wrapping up

As an introduction to a general discussion, we summarize the grammatical archi-
tecture of LG.

» The central component is an algebra of proofs

> Directionality is part of the tectogrammatical organization.

> Symmetry and structure-preserving interaction account for dependencies
beyond the reach of (N)L

» The derivations have two interpretations, reflecting the form and meaning
dimensions of linguistic signs:

> Frame semantics provides interpretation for relations of Merge, feature
checking, incompatibility, ...~~~ completeness

> Curry-Howard semantics relates derivations to instructions for meaning
assembly, via a CPS transformation
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