Symmetric categorial grammar Friday

Raffaella Bernardi & Michael Moortgat

Abstract

We study unary residuated and Galois connected operators in the symmetric setting of Lambek-Grishin calculus.

Contents

1	Plan for today	5
2	Residuation and Galois connections	6
3	Vocabulary	7
4	Monotonicity, compositions	8
5	Compare: binary and unary operators	9
6	(Dual) residuation principles	10
7	Grishin interaction principles	11
8	(Dual) Galois connected operations	12
9	Truth conditions, completeness	13
10	Curry Howard interpretation	14
11	eta equivalence	15
12	η equivalence	16
13	Delimiting control	17
14	Derivation	18
15	CPS interpretation: types	19
16	CPS interpretation: terms	20
17	CPS interpretation (cont'd)	21

18	Non-bridge predicates: lexical semantics	22
19	Homework	23
20	More to Explore	24
21	Wrapping up	25

1. Plan for today

- ▶ Residuation and Galois connections in logic and algebra
- Order-preserving and order-reversing modalities
- Decidability
- ▶ Completeness for the relational semantics
- Curry-Howard interpretation (work in progress . . .)
- ▶ Linguistic applications: islands and scope delimitation

2. Residuation and Galois connections

Dunn 1999 gives a nice overview of the role played by residuation and Galois connection in algebra and logic.

Ordered sets (X, \leq) , (Y, \leq') with mappings

$$f: X \longrightarrow Y \qquad g: Y \longrightarrow X$$

The defining biconditionals for residuated pairs (rp), Galois connected pairs (gc), dual rp (drp) and dual Galois gc (dgc) are given below.

3. Vocabulary

iff	$x \leq gy$	$gy \le x$
$fx \leq' y$	rp	dcg
$y \leq' fx$	gc	drp

$$A ::= \Diamond A \mid \Box A \mid A^{1} \mid {}^{1}A$$

$${}^{0}A \mid A^{0} \mid \blacksquare A \mid \spadesuit A$$

4. Monotonicity, compositions

An equivalent characterization of (d)rp, (d)gc is in terms of the tonicity properties of f, g and their compositions.

Compositions:

	$1_X \le gf$	$gf \leq 1_X$
$fg \leq' 1_Y$	rp	dgc
$1_Y \leq' fg$	gc	drp

Toniciy:

- ▶ (d)rp: f, g are order-preserving $(\lozenge, \square, \blacksquare, \spadesuit)$
- ▶ (d)gc: f, g are order-reversing (0, 0, 1, 1)

5. Compare: binary and unary operators

$$\frac{B \circ \Gamma \longrightarrow \Delta[A]}{\Gamma \longrightarrow \Delta[B \backslash A]} \; (\backslash R) \quad \frac{\langle \Gamma \rangle \longrightarrow \Delta[A]}{\Gamma \longrightarrow \Delta[\Box A]} \; (\Box R)$$

$$\frac{\Delta \longrightarrow B \quad \Gamma[A] \longrightarrow \Delta'}{\Gamma[\Delta \circ B \backslash A] \longrightarrow \Delta'} \; (\backslash \mathsf{L}) \quad \frac{\Gamma[A] \longrightarrow \Delta'}{\Gamma[\langle \Box A \rangle] \longrightarrow \Delta'} \; (\Box \mathsf{L})$$

$$B \otimes B \backslash A \leq A$$

$$\Diamond \Box A \leq A$$

$$\frac{\Gamma[D] \longrightarrow \Delta'}{\Gamma[C] \longrightarrow \Delta'} \qquad \text{if } C \le D$$

6. (Dual) residuation principles

For decidable proof search, we extend our combinator system with the shifting and monotonicity rules for the unary operator cases.

The unary residuated \Diamond , \square and their duals have the same rules: a cobox is a diamond, a codiamond a box. Cf $\langle F \rangle$ versus $\langle P \rangle$ in temporal logic. Cf Anna Chernilovskaya, Reader Ch 5.

$$\frac{f: \lozenge A \to B}{\operatorname{rp} \ f: A \to \square B} \qquad \frac{f: \spadesuit A \to B}{\operatorname{drp} \ f: A \to \blacksquare B}$$

Monotonicity principles

$$\frac{A \to B}{\lozenge A \to \lozenge B} \qquad \frac{A \to B}{\blacklozenge A \to \blacklozenge B} \qquad \frac{A \to B}{\Box A \to \Box B} \qquad \frac{A \to B}{\blacksquare A \to \blacksquare B}$$

Symmetries

$$(\lozenge A)^{\bowtie} = \blacklozenge (A^{\bowtie}) \qquad (\square A)^{\bowtie} = \blacksquare (A^{\bowtie})$$
$$(\lozenge A)^{\infty} = \blacksquare (A^{\infty}) \qquad (\square A)^{\infty} = \blacklozenge (A^{\infty})$$

7. Grishin interaction principles

The Grishin interactions extend to the unary vocabulary.

$$\blacklozenge A \otimes B \to \blacklozenge (A \otimes B) \quad A \otimes \blacklozenge B \to \blacklozenge (A \otimes B) \quad \Diamond \blacklozenge A \to \blacklozenge \Diamond A$$

Equivalently, there are the dual forms:

$$\Box(A \oplus B) \to \Box A \oplus B \qquad \Box(A \oplus B) \to A \oplus \Box B \qquad \Box \blacksquare A \to \blacksquare \Box A$$

For decidable proof search, we put them in rule form (compiling away the use of transitivity):

$$\frac{\oint (A \otimes B) \to C}{\oint A \otimes B \to C} R1 \qquad \frac{\oint (A \otimes B) \to C}{A \otimes \oint B \to C} R2 \qquad \frac{\oint \Diamond A \to B}{\Diamond \oint A \to B} R3$$

8. (Dual) Galois connected operations

Galois principles:

$$\frac{f: B \to A^{\mathbf{0}}}{\lg f: A \to {}^{\mathbf{0}}B} \qquad \frac{f: B \to {}^{\mathbf{0}}A}{\operatorname{rg} f: A \to B^{\mathbf{0}}}$$

$$\frac{f:A\to B}{{}^{\mathbf{0}}f:{}^{\mathbf{0}}B\to{}^{\mathbf{0}}A} \qquad \frac{f:A\to B}{f^{\mathbf{0}}:B^{\mathbf{0}}\to A^{\mathbf{0}}}$$

Dual Galois principles:

$$\frac{f:B^1\to A}{\operatorname{ldg}\,f:{}^1A\to B} \qquad \frac{f:{}^1B\to A}{\operatorname{rdg}\,f:A^1\to B}$$

$$\frac{f:A\to B}{{}^1\!f:{}^1\!B\to{}^1\!A} \qquad \frac{f:A\to B}{f^1:B^1\to A^1}$$

9. Truth conditions, completeness

$$x \Vdash \Diamond A \quad \text{iff} \quad \exists y. R_{\Diamond} xy \ \land \ y \Vdash A$$

$$x \Vdash \Box A \quad \text{iff} \quad \forall y. R_{\Diamond} yx \Rightarrow y \Vdash A$$

$$x \Vdash \blacklozenge A \quad \text{iff} \quad \exists y. R_{\blacklozenge} xy \ \land \ y \Vdash A$$

$$x \Vdash \blacksquare A \quad \text{iff} \quad \forall y. R_{\blacklozenge} yx \Rightarrow y \Vdash A$$

$$m \Vdash A^{\mathbf{0}} \quad \text{iff} \quad \forall m'. (R_{0}mm' \Rightarrow m' \not\Vdash A)$$

$$m \Vdash {}^{\mathbf{0}}A \quad \text{iff} \quad \forall m'. (R_{0}m'm \Rightarrow m' \not\Vdash A)$$

$$m \Vdash {}^{\mathbf{1}}A \quad \text{iff} \quad \exists m'. (R_{1}mm' \land m' \not\vdash A)$$

$$m \Vdash A^{\mathbf{1}} \quad \text{iff} \quad \exists m'. (R_{1}m'm \land m' \not\vdash A)$$

Completeness Unary extensions of relational completeness are in Kurtonina & Moortgat (rp), Chernilovskaya 07 (drp), Areces, Bernardi & Moortgat 01 (gc).

10. Curry Howard interpretation

As an example of the requirements to be met, we work out the sequent term labeling for \square .

Extending the term language

$$\begin{tabular}{lll} $^{\wedge}M \in \mathsf{Term}^{\square A}$ & if & $M \in \mathsf{Term}^A$ \\ $^{\vee}K \in \mathsf{CoTerm}^{\square A}$ & if & $K \in \mathsf{CoTerm}^A$ \\ \end{tabular}$$

Sequent rules In addition to the binary punctuation $(-\circ -)$ (structural counterpart of \otimes in the antecedent), we now have angular brackets $\langle -\rangle$ as structural counterpart of \diamondsuit .

$$\frac{\langle \Gamma \rangle \xrightarrow{M} \Delta[A]}{\Gamma \xrightarrow{\wedge M} \Delta[\Box A]} (\Box R) \qquad \frac{\Gamma[A] \xrightarrow{K} \Delta}{\Gamma[\langle \Box A \rangle] \xrightarrow{\vee} K} \Delta (\Box L)$$

11. β equivalence

The two faces of identity give rise to β and η equivalences. Consider $(\Box \beta)$ first.

$$(\Box \beta) \qquad (^{\wedge}M * {}^{\vee}K) \quad \longrightarrow \quad (M * K)$$

 $(\Box \beta)$ is the image of the following transformation on sequent proofs.

$$\frac{\langle \Gamma \rangle \xrightarrow{M} A}{\Gamma \xrightarrow{\wedge M} \Box A} (\Box R) \xrightarrow{A \xrightarrow{K} \Delta} (\Box L)$$

$$\frac{\Gamma \xrightarrow{\wedge M} \Box A}{\langle \Gamma \rangle \xrightarrow{(\wedge M *^{\vee} K)} \Delta} (Cut) \xrightarrow{\langle \Gamma \rangle \xrightarrow{M} A} A \xrightarrow{K} \Delta \xrightarrow{K} \Delta (Cut)$$

$$\langle \Gamma \rangle \xrightarrow{(\wedge M *^{\vee} K)} \Delta \xrightarrow{\langle \Gamma \rangle \xrightarrow{M} A} \Delta \xrightarrow{K} \Delta$$

12. η equivalence

 $(\Box \eta)$ is the image of the following proof transformation.

$$\frac{A \xrightarrow{\alpha} \alpha : A}{\langle \Box A \rangle \xrightarrow{\vee \alpha} \alpha : A} (\Box L)$$

$$\xrightarrow{\langle \Box A \rangle \xrightarrow{\alpha} \alpha : A} (\leftrightarrows)$$

$$\xrightarrow{\langle x : \Box A \rangle} \frac{\mu \alpha . (x *^{\vee} \alpha)}{A} (\Box R)$$

$$x : \Box A \xrightarrow{x} \Box A \sim x : \Box A \xrightarrow{\wedge \mu \alpha . (x *^{\vee} \alpha)} \Box A$$

Next step CPS interpretation. Before turning to it, let us review the linguistic use of the modalities we have in mind.

13. Delimiting control

Island decoration For non-bridge predicates, we decorate the complement sentence with co-box. Recall that \Diamond doesn't block an embedded QP $(s \oslash s) \oslash np$ to take non-local scope: \Diamond is transparent for the Grishin interactions.

(bridge) thinks
$$(np \backslash s)/s$$
 (non-bridge) thonks $(np \backslash s)/\spadesuit s$

The modal decoration on the complement sentence triggers the matching structural decoration, as in the example below, where Subj could be a simple noun phrase or a QP. In the latter case, \blacklozenge blocks non-local scope.

$$np \otimes (((np \backslash s)/ \spadesuit s) \otimes \spadesuit (Subj \otimes (np \backslash s))) \rightarrow s$$

Challenge Can we make sense of this semantically? In the cbn setting, this means giving a CPS interpretation for $\spadesuit^{\infty} = \square$.

14. Derivation

$$\frac{s_3 \vdash s_6 \quad np_5 \vdash np_4}{\underbrace{(s_3 \oslash np_4) \vdash (s_6 \oslash np_5)}_{s_3 \vdash ((s_6 \oslash np_5) \oplus np_4)}^{\bullet \vee}} \qquad \qquad s_7 \vdash s_2 \quad np_1 \vdash np_0}{\underbrace{\Box s_3 \vdash \Box ((s_6 \oslash np_5) \oplus np_4)}_{\Box s_3 \vdash \Box ((s_6 \oslash np_5) \oplus np_4)}^{\bullet \vee}} \qquad \qquad \underbrace{(s_7 \oslash np_0) \vdash (s_2 \oslash np_1)}_{\Box (s_7 \oslash np_0) \vdash (\Box s_3 \oslash (s_2 \oslash np_1)))}^{\bullet \vee}} \qquad \qquad \underbrace{(\Box ((s_6 \oslash np_5) \oplus np_4) \oslash (s_7 \oslash np_0)) \vdash (\Box s_3 \oslash (s_2 \oslash np_1)))}_{s_7 \vdash ((\Box ((s_6 \oslash np_5) \oplus np_4) \oplus (\Box s_3 \oslash (s_2 \oslash np_1))) \oplus np_0)}^{\bullet \vee}}$$

The CPS image of this proof is the term below.

$$\lambda c.([\![\mathsf{thonks}]\!] \langle \lambda k.(k \ \lambda c'.([\![\mathsf{left}]\!] \ \langle c', [\![\mathsf{leopold}]\!] \rangle)), \langle c, [\![\mathsf{molly}]\!] \rangle))$$

After lexical substitution, we would like to associate the derivation with the following interpretation.

$$\lambda c.(c \text{ ((thonks } \lambda c'.(c' \text{ (left leopold)) molly)})$$

15. CPS interpretation: types

Types For the domain of interpretation of $\Box A$, we consider two candidates.

$$\begin{array}{ccc} (\dagger) & \lceil \Box A \rceil & = & R^{R^{\lceil A \rceil \times R^R} \times R^R} \\ & \cong & (\lceil A \rceil \to ((R \to R) \to R)) \to ((R \to R) \to R) \end{array}$$

$$(\ddagger) \quad \lceil \Box A \rceil = R^{R^{\lceil A \rceil}}$$

$$\cong (\lceil A \rceil \to R) \to R$$

Both options take $\lceil A \rceil$ to a lifted level: R in the case of (‡), computation of R in the case of (†).

16. CPS interpretation: terms

Consider first the (†) option where $\lceil \Box A \rceil = (\lceil A \rceil \to C_R) \to C_R$.

$$\Box A \qquad \lceil {}^{\wedge}M \rceil = \lambda k.(k \ \lambda \langle m, c \rangle.(\lceil M \rceil \ \lambda x.(m \ \langle x, c \rangle))) \qquad M:A$$

$$\square A \qquad \lceil {}^{\vee}K \rceil = \lambda h.(h \ \langle \ \lambda \langle x,c \rangle.(c \ (\lceil K \rceil \ x)), \operatorname{ID} \ \rangle) \qquad \qquad K:A$$

Remark $\lceil {}^{\lor}K \rceil$ is the reverse of the SHIFT construct.

SHIFT
$$((V_A \to C_R) \to C_R) \to (K_A \to R)$$

SWAP SHIFT $K_A \to (((V_A \to C_R) \to C_R) \to R)$

With this interpretation $(\Box \beta)$ is satisfied at the CPS level. But $(\Box \eta)$ is not . . .

$$\lceil (^{\wedge}M * {}^{\vee}K) \rceil = (\lceil ^{\wedge}M \rceil \lceil ^{\vee}K \rceil) = (\lceil M \rceil \lceil K \rceil)$$

17. CPS interpretation (cont'd)

The (‡) option maps an A value to an A computation $(\lceil A \rceil \to R) \to R$. We give the CPS interpretation for the monotonicity rule.

$$\frac{f:A\to B}{f^{\square}:\square A\to\square B}$$

$$\lceil (f^{\square})^{\triangleleft} \rceil \beta = \lambda k. (k \{ \lceil f^{\triangleleft} \rceil \lambda y. (\beta \lambda c. (c y)) \})$$

And for the $\overline{\lambda}\mu\tilde{\mu}$ proof terms.

$$\Box A \qquad \lceil {}^{\wedge}M \rceil = \lambda h.(\lceil M \rceil \ \lambda x.(h \ \lambda c.(c \ x))) \qquad M:A$$

$$\Box A \qquad \lceil {}^{\vee}K \rceil = \lambda k.(k \lceil K \rceil) \qquad K:A$$

18. Non-bridge predicates: lexical semantics

Recall the proof term for 'Molly thonks Leopold left' (non-bridge predicate 'thonks').

$$\lambda c.(\|\texttt{thonks}\| \ \langle \lambda k.(k \ \lambda c'.(\|\texttt{left}\| \ \langle c', \|\texttt{leopold}\| \rangle)), \langle c, \|\texttt{molly}\| \rangle \rangle)$$

The complement is a $\Box s$ computation, i.e. $((\lfloor s \rfloor \to R) \to R) \to R$, which lowers to $\lfloor s \rfloor \to R$ (s computation) by the combinator below.

LOWER
$$(((A \to B) \to B) \to C) \to (A \to C)$$

 $\lambda h \lambda v. (h \ \lambda c. (c \ v))$

We then have the following lexical recipe for the non-bridge predicate, resulting in the desired reduced reading.

19. Homework

In ongoing work we pursue this line further to better understand the use of modal decoration in NL semantics (as in Bernardi & Szabolcsi 2007).

- ▶ What is the semantic import of a given modal decoration?
- ▶ What is the linguistic significance of derivational ambiguities among such decorations?

Example The type transition $\Box \Diamond p \to \Box \Diamond \Box \Diamond p$ has two distinct readings.

$$\begin{array}{ccc} \frac{p \to p}{\Diamond p \to \Diamond p} & \frac{p \to p}{\Diamond p \to \Diamond p} \\ \frac{p \to \Box \Diamond p}{\Diamond p \to \Diamond \Box \Diamond p} & \frac{\Box \Diamond p \to \Box \Diamond p}{\Box \Diamond p \to \Box \Diamond \Box \Diamond p} \\ \hline{((\mathsf{rp}((1_p)^\lozenge))^\lozenge)^\Box} & \mathsf{rp}((((1_p)^\lozenge)^\Box)^\lozenge) \end{array}$$

20. More to Explore

Apart from Chapter 5 of the Course Materials, we would like to recommend the following two references for systematic exploration of the landscape of possible type-forming operations.

- ▶ Rajeev Goré (1998) gives a comprehensive picture of substructural logics from the Display Logic perspective. There is a link on our References page.
- ▶ Richard Moot (2007) 'Proof Nets for Display Logics' develops the theory of Proof Nets for these systems, with a discussion of LTAG simulation via the Grishin interaction postulates. We hope to see his paper on these pages soon!

21. Wrapping up

As an introduction to a general discussion, we summarize the grammatical architecture of **LG**.

- ▶ The central component is an algebra of proofs
 - Directionality is part of the tectogrammatical organization.
 - ▶ Symmetry and structure-preserving interaction account for dependencies beyond the reach of (N)L
- ► The derivations have two interpretations, reflecting the form and meaning dimensions of linguistic signs:
 - ▶ Frame semantics provides interpretation for relations of Merge, feature checking, incompatibility, . . . → completeness
 - ▶ Curry-Howard semantics relates derivations to instructions for meaning assembly, via a CPS transformation

