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Chapter 4 Draft of a paper accepted for MOL’07, UCLA, July 28–30, 2007. Final version to
appear in M. Kracht, G. Penn and E. Stabler (eds.) Proceedings of the 10th Mathematics
of Language Conference. UCLA Working Papers in Linguistics.

Chapter 5 A chapter from Anna Chernilovskaya’s “Notes on the Lambek-Grishin calculus”,
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Chapter 6 Draft of a paper accepted for FG’07, Dublin, August 4–5, 2007. Final version
to appear in L. Kallmeyer et.al. (eds.) Proceedings of the 12th Conference on Formal
Grammar.
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On a Generalization
of the Ajdukiewicz-Lambek System

Viacheslav Nikolaevich Grishin

Bibliographic note Original version "Об одном обобщении системы Айдукевича–Ламбека"
in A.I. Mikhailov (ed.) Studies in non-classical logics and formal systems, Nauka, Moscow 1983,
pages 315–334 (Исследования по неклассическим логикам и формальным системам, Наука,
М., 1983). An English translation by D. C̆ubrić , edited by the author, appeared in V.M. Abrusci
and C. Casadio (eds.) New Perspectives in Logic and Formal Linguistics. Proceedings 5th Roma
workshop, Bulzoni Editore, Rome, 2002. The corrected version below was prepared by Anna
Chernilovskaya.

In this article we consider ordered algebraic systems, generalizing partially ordered groups ?, and
Heyting-Brouwer algebras ?.
In groups there is a division a\y = a−1y , satisfying the equivalence ax = y ⇔ x = a\y . In
Heyting algebras there is an implication a ⊃ y , satisfying “almost” the same equivalence

ax ≤ y ⇔ x ≤ a ⊃ y (1.1)

but only having ≤ instead of = . Splitting the group operation in two operations a ·x and a×x
and for each of them writing (1.1) but with reversed inequality in the second case, we get (1.1)
and also

a× x ≥ y ⇔ x ≥ a .. y . (1.2)
This is the idea of the generalization.
The question about a generalization of group-like and logical systems was brought up by Birkhoff
in the case of lattice-ordered groups ( ! -groups) and Boolean algebras ?. Swamy ? described a
class of systems generalizing commutative !-groups and Brouwer algebras.
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1. On a Generalization of the Ajdukiewicz-Lambek System

Here we suggest a class of systems that is considerably broader than Swamy’s class and includes
unordered groups as well. Adding certain inequalities to the axioms of the algebraic systems
considered, one gets not only ordered groups and Heyting-Brouwer algebras, but also some other
systems which appear in the literature, for example Chang’s MV-algebras [2] and L◦ -algebras [5].
Although the situation is more general, many notions and properties that are known for groups
and Heyting algebras have their analogies here, from which one gets respective notions and
properties in groups and Heyting algebras as a particular case.
The word “generalization” from the title refers to the axiomatization and not to the class of
systems satisfying the axioms. This class is smaller than the Ajdukiewicz-Lambek class, and the
axiomatization is, respectively, larger than in Lambek [6].

1.1 Axiomatization

1.1 We shall consider ordered algebraic systems

A = (A; ≤ , · , \ , / , 1 , × , .. , .. , I ) ,

satisfying the preorder axioms:

PO1. x ≤ x ; PO2. x ≤ y & y ≤ z =⇒ x ≤ z

and the following axioms:

A1. Axioms of adjointness:

1. a · x ≤ y ⇔ x ≤ a\y 2. x · a ≤ y ⇔ x ≤ y/a
3. y ≤ a× x⇔ a .. y ≤ x 4. y ≤ x× a⇔ y .. a ≤ x

A2. Axioms of same sort associativity:

1. b · (x · a) ≤ (b · x) · a 2. (a · x) · b ≤ a · (x · b)
3. b× (x× a) ≤ (b× x)× a 4. (a× x)× b ≤ a× (x× b)

A3. Axioms of mixed associativity:

1. b · (x× a) ≤ (b · x)× a 2. (a× x) · b ≤ a× (x · b)

A4. Axioms of neutrality of the constants 1 and I :

1. x ≤ 1 · x ≤ x 2. x ≤ x · 1 ≤ x
3. x ≤ I× x ≤ x 4. x ≤ x× I ≤ x

Here and from now on x, y, z, a, b are variables ranging over A . Equality of two elements x
and y from A is understood as a conjunction of two inequalities

x = y 
 (x ≤ y) & (y ≤ x)

It is well known that from the axioms of adjointness one can derive axioms of monotonicity
(congruence of operations with the order):

AM.
x ≤ x1 & y ≤ y1 =⇒ x · y ≤ x1 · y1 & x× y ≤ x1 × y1 &

x1\y ≤ x\y1 & y/x1 ≤ y1/x &
x1

.. y ≤ x .. y1 & y .. x1 ≤ y1 .. x
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Axiomatization

1.2 Ajdukiewicz-Lambek systems are systems of the type (A; ≤, ·, \, /) , satisfying the
preorder axioms PO1 and PO2 and the axioms A1.1, A1.2, A2.1, A2.2. System A1-A4 consists of
two Ajdukiewicz-Lambek systems with neutral elements: one is (A; ≤, ·, \, /, 1) , and another
is (A; ≥, ×, .., .., I) which are interconnected with the A3 axioms.

1.3 Partially ordered groups in a signature: ≤ – a preorder, ◦ – a group composition, \ –
a left division, / – a right division, e – a neutral element — can be defined with axioms PO1,
PO2 together with the following axioms:

G1. b ◦ (x ◦ a) ≤ (b ◦ x) ◦ a (b ◦ x) ◦ a ≤ b ◦ (x ◦ a)

G2. a ◦ x ≤ y ⇔ x ≤ a\y x ◦ a ≤ y ⇔ x ≤ y/a
y ≤ a ◦ x⇔ a\y ≤ x y ≤ x ◦ a⇔ y/a ≤ x

G3. x ≤ e ◦ x ≤ x x ≤ x ◦ e ≤ x

If we define x = y 
 (x ≤ y) & (y ≤ x) , then from G2 follows: a ◦ x = y ⇔ x = a\y , and
x ◦ a = y ⇔ x = y/a . Axioms A1-A4 are obtained from the group axioms G1-G3 by substituting
in certain places the group composition for operations · and × , the left division for left quasi-
divisions \ and .. , the right division for right quasi-divisions / and .. , the neutral element for 1
and I .
An ordered group can be considered as an example of a system satisfying A1-A4, if we define
a · b = a ◦ b , a× b = a ◦ b , a .. b = a\b , b .. a = b/a , 1 = I = e , and ◦ , \ , / are unchanged.

1.4 Recall that a Heyting-Brouwer algebra is a Heyting (pseudoboolean) algebra with an addi-
tional binary operation of subtraction y− a , satisfying the equivalence y ≤ x∨ a⇔ y− a ≤ x .
Heyting-Brouwer algebras also satisfy the axioms A1-A4. Here we define a·b = a∧b , a×b = a∨b ,
a\b = b/a = a ⊃ b , a .. b = b .. a = b− a ; 1 and I are supremum and infimum respectively.

1.5 The system A1-A4 has two kinds of duality.
First. Axioms are translated into axioms substituting ≤ for ≥ and every operation symbol ω
for its dual ω◦ according to the table

ω · × \ / .. .. 1 I
ω◦ × · .. .. \ / I 1

Second, also called the principle of symmetry. Axioms are translated into axioms by substituting
every term t for the symmetrical term t∼ which is defined inductively:

x∼ 
 x (x is a variable)
(t1 ω t2)∼ 
 (t∼2 ω∼ t∼1 ),

where ω∼ is the symmetrical operation symbol as in the table

3



1. On a Generalization of the Ajdukiewicz-Lambek System

ω · × \ / .. .. 1 I
ω∼ · × / \ .. .. 1 I

Let us denote as t◦ the term obtained from t by substitution ω for ω◦ . Then t◦∼
.= t∼◦ , where

.= is graphical equality. Therefore, for every statement A derived from A1-A4, we automatically
get three more valid statements: A◦, A∼, A◦∼ .

1.2 Derivable formulas and equivalent axiomatizations

2.1 Since many derivations are performed similarly, it is convenient to introduce some “unified”
notations.
With every binary operation ω : A×A→ A one naturally associates two operations of the type
A → AA . One, denoted as (ω?) , converts a ∈ A into the operation of the left shifting: x 7→
aω x ; another one, denoted as (?ω) , transforms a ∈ A into the operation of the right shifting:
x 7→ xω a . Since in A1-A4 there are 6 binary operations, we get 12 operations A→ AA . Let

Ω = { ·? , \? , ?\ , /? , ?/ , ?· , ×? , ..? , ?
.. , ..? , ?.. , ?×}

be the set of these operations’ symbols. Let λ , µ , ν denote elements of Ω . With aµx we
denote the term (aω x) , if µ = (ω?) , and the term (xω a) , if µ = (?ω) , where ω is a binary
operation symbol from A1-A4.

2.2 For ε ∈ {0, 1} we denote

x ≤ε y 


{
x ≤ y, if ε = 0
y ≤ x, if ε = 1

Also let

|µ| =
{

1, if µ = ?\ or µ = /? or µ = ?
.. or µ = ..?

0, otherwise

The following formula will be called the monotonicity axiom for µ :

AMµ . ∀x, y, a (x ≤ y =⇒ aµx ≤|µ| aµy)

The monotonicity axiom for µ can be rewritten in a form:

∀x, y, a (x ≤|µ| y =⇒ aµx ≤ aµy)

The monotonicity axioms are derivable from A1, and they state isotonicity or antitonicity of
system operations in appropriate argument places.

2.3 Let us define a function ⊥ : Ω→ Ω with a table

µ ·? ?\ ?/ ×? ?
.. ?..

µ⊥ \? /? ?· ..? ..? ?×

and with an equality µ⊥⊥ = µ .
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Derivable formulas and equivalent axiomatizations

We will call the axiom of left adjunction for µ the following formula

LAµ . ∀ a, x, y (aµx ≤ y ⇔ x ≤|µ| aµ⊥y).

The axiom of right adjunction for µ is

RAµ . ∀ a, x, y (y ≤ aµx⇔ aµ⊥y ≤|µ| x).

If µ is any symbol from the set { ?·, ·?, ?
.., ..?, ?.., ..? } , LAµ follows from A1. For the

other symbols µ the formula RAµ is provable. Therefore, the latter symbols are called right
and the former left. Let us show, for example, RAµ for µ = ?\ .

y ≤ aµx⇔ y ≤ x\a⇔ x · y ≤ a⇔ x ≤ a/y ⇔ aµ⊥y ≤|µ| x.

Remark. Words “left” and “right” come from the category theory. If an ordered set C = (A; ≤)
is considered as a category, and operation of shifting x 7→ aµx as a functor F : C→ C|µ| , where

C|µ| =
{

C , if |µ| = 0
Cop (dual category) , if |µ| = 1,

then F is left adjoint of the functor G : C|µ| → C = C|µ|+|µ⊥| , where G is x 7→ aµ⊥x .

2.4 Let

µ∗ 


{
?ω , if µ = ω?

ω? , if µ = ?ω.

Obviously aµ∗b
.= bµa . It is also easy to see that if we start with µ = ·? , the ordered sequence

µ , µ⊥ , µ⊥∗ , µ⊥∗⊥ , µ⊥∗⊥∗ , µ⊥∗⊥∗⊥ is the sequence of the first six elements of Ω . If
µ = ×? , the sequence above gives the remaining six elements of Ω .
Let us list all needed properties of the functions ∗ , ⊥ , | · | , which are direct consequences of
their definitions:

(1) µ∗∗ = µ , µ⊥⊥ = µ
(2) µ∗⊥∗ = µ⊥∗⊥
(3) |µ⊥| = |µ| , |µ⊥∗| = |µ|+ |µ∗|+ 1 . (Here the addition is modulo 2)

2.5 We shall consider the following six inequalities:

(1) ∀ a, b, c (aµbλc ≤ bλaµc)

(2) ∀ a, b, c (bλaµ⊥c ≤|µ| aµ⊥bλc)

(3) ∀ a, b, c (aλ⊥bµc ≤|λ| bµaλ⊥c)

(4) ∀ a, b, c ((aλ⊥b) µ∗⊥c ≤|µ∗| bµ∗⊥aλc)

(5) ∀ a, b, c (aλ∗⊥bµc ≤|λ∗| (bµ⊥a)λ∗⊥c)

(6) ∀ a, b, c ((cµ∗⊥b) µa ≤ (cλ∗⊥a)λb)

Theorem 1. The following implications hold:
(1.1) |λ| = 0 & LAµ & AMλ =⇒ (1)⇔ (2) ,
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1. On a Generalization of the Ajdukiewicz-Lambek System

(1.2) |µ| = 0 & RAλ & AMµ =⇒ (1)⇔ (3) ,

(1.3) |λ| = 0 & LAµ∗ & RAλ =⇒ (3)⇔ (4) ,

(1.4) |µ| = 0 & RAλ∗ & LAµ =⇒ (2)⇔ (5) ,

(1.5) |µ| = |λ| = 0 & LAµ∗ & RAλ∗ & AMµ & AMλ & AMµ∗ & AMλ∗ =⇒ (1)⇔ (6)

Proof. For every formula A and every ε ∈ {0, 1} , (A)ε stands for the formula in which ≤
is replaced by ≤ε . If a formula A is one of the six inequalities having a certain number, for
example (1), then (1)ε means (A)ε . If A is the left adjunction axiom for µ , (A)ε is

(LAµ)ε. aµx ≤ε y ⇔ x ≤|µ|+ε aµ⊥y

and (LAµ)ε+1 is equivalent to (RAµ)ε . For the monotonicy axiom we have

(AMµ)ε ⇔ AMµ .

We will prove (1.1)ε – (1.4)ε . First notice that

aµ⊥c ≤ε+|µ| aµ⊥c & (LAµ)ε =⇒ aµaµ⊥c ≤ε c

and therefore:
AMλ & |λ| = 0 & (LAµ)ε =⇒ bλaµaµ⊥c ≤ε bλc

Using that, from (1)ε with aµ⊥c replacing c one derives aµbλaµ⊥c ≤ε bλ⊥c . This implies
(2)ε .
Having µ⊥ instead of µ , ε + |µ| + 1 instead of ε and leaving λ unchanged, previous proof
gives (2)ε =⇒ (1)ε . (This is possible because the replacements leave (LAµ)ε unchanged.) This
proves (1.1)ε .
Substituting µ 7→ λ , λ 7→ µ , ε 7→ ε + 1 in (1.1)ε , we get (1.2)ε .
Let us prove (1.3)ε . First:

(LAµ∗)ε =⇒ (uµaλ⊥b ≤ε c⇔ u ≤ε+|µ∗| (aλ⊥b)µ∗⊥c) (∗)

(we used the graphical equality uµaλ⊥b
.= (aλ⊥b)µ∗u ). Second:

(RAλ)ε & |λ| = 0 & (LAµ∗)ε =⇒ (aλ⊥uµb ≤ε c⇔ bµ∗u ≤ε aλc⇔ u ≤ε+|µ∗| bµ∗⊥aλc) (∗∗)

With |λ| = 0 , from (3)ε it follows that the left part of the equivalence in (*) implies first formula
from the equivalent ones in (**). Therefore, the right part of the equivalence in (*) implies the
last equivalent formula in (**). Having u = (aλ⊥b)µ∗⊥c , we get (3)ε =⇒ (4)ε . Using (4)ε ,
from the right part of the equivalence in (*) one derives the last equivalent formula in (**), and
going in other direction, we get (3)ε (using c = uµaλ⊥b ).
From (1.3)ε , substituting µ 7→ λ , λ 7→ µ , ε 7→ ε + 1 , we get (1.4)ε .
Let us prove (1.5). From (1), substituting a 7→ cµ∗⊥b , b 7→ cλ∗⊥a , c 7→ c we have

(cµ∗⊥b)µ(cλ∗⊥a)λc ≤ (cλ∗⊥a)λ(cµ∗⊥b)µc (∗ ∗ ∗)

Since
RAλ∗ & PO1 =⇒ a ≤ cλ∗cλ∗⊥a

and
LAµ∗ & PO1 =⇒ cµ∗cµ∗⊥b ≤ b

6



Derivable formulas and equivalent axiomatizations

then substituting (cλ∗⊥a)λc
.= cλ∗cλ∗⊥a for a on the left side of (***), and on the right side

(cµ∗⊥b)µc
.= cµ∗cµ∗⊥b for b , using AMµ , AMλ , and |µ| = |λ| = 0 , we get (cµ∗⊥b)µa ≤

(cλ∗⊥a)λb , which is the same as (6). From (6), substituting c 7→ cλ∗b , b 7→ cµ∗a , c 7→ c , we get
(cµ∗⊥cµ∗a)µcλ∗b ≤ (cλ∗⊥cλ∗b)λcµ∗a , i.e (cλ∗b)µ∗cµ∗⊥cµ∗a ≤ (cµ∗a)λ∗cλ∗⊥cλ∗b . From this, using
the inequalities a ≤µ∗ cµ∗⊥cµ∗a , cλ∗⊥cλ∗b ≤λ∗ b derived from LAµ∗ and RAλ∗ , and applying
AMµ∗ , AMλ∗ , we come to (1).

2.6 Corollary. If µ is left, λ is right, and |µ| = |λ| = 0 , the axioms A1 imply equivalence of
the inequalities (1)–(6).
Proof. As it was noticed in 2.2 and 2.3, A1 =⇒ AMµ for all µ ∈ Ω . Also A1 =⇒ LAµ for the
left µ and A1 =⇒ RAµ for the right µ . Moreover, ∗ preserves the direction of adjointness for
symbols in Ω . Therefore, the premises of the implications in Theorem 1 are satisfied.

2.7 We are going to see what the formulas (1)-(6) are for particular µ and λ . There are
four left µ for which |µ| = 0 (namely ·?, ?·, ..?, ?.. ), and four right λ for which |λ| = 0
(×?, ?×, \?, ?/ ), therefore, there are 16 classes of equivalent formulas (1)-(6). For given µ
and λ , let Kµλ be the list of (1)-(6). Consider the following classes Kµλ .

IR = Kµλ, where µ = (?·), λ = (×?) .

(1) (b× c) · a ≤ b× (c · a) (4) (a .. b)\c ≤ b\(a× c)
(2) a× (c/b) ≤ (a× c)/b (5) (c · b) .. a ≤ c .. (a/b)
(3) a .. (c · b) ≤ (a .. c) · b (6) a · (c\b) ≤ (a .. c)× b

IIR = Kµλ, where µ = (?·), λ = (\?) .

(1) (b\c) · a ≤ b\(c · a) (4) (a · b)\c ≤ b\(a\c)
(2) a\(c/b) ≤ (a\c)/b (5) (a/b)/c ≤ a/(c · b)
(3) a · (c · b) ≤ (a · c) · b (6) a · (c\b) ≤ (c/a)\b

IIIL = Kµλ, where µ = (..?), λ = (?×) .

(1) a .. (c× b) ≤ (a .. c)× b (4) b .. (c× a) ≤ (b .. a) .. c
(2) (a× c)× b ≤ a× (c× b) (5) a .. (b .. c) ≤ (b× a) .. c
(3) (a .. c) .. b ≤ a .. (c .. b) (6) (c .. b) .. a ≤ b× (c .. a)

IVR = Kµλ, where µ = (?..), λ = (\?) .

(1) (b\c) .. a ≤ b\(c .. a) (4) (a\c) .. b ≤ c .. (a · b)
(2) b\(c× a) ≤ (b\c)× a (5) (a× b)/c ≤ a/(c .. b)
(3) a · (c .. b) ≤ (a · c) .. b (6) a .. (b .. c) ≤ (c/a)\b

We will denote classes that are symmetrical to the above ones as IL , IIL , IIIR , IVL . If µ = (ω?) ,
let us define µ∼ = (?ω∼) , where ω∼ is an operation symmetrical to ω (see 1.5) (analogously,
µ∼ = (ω∼?) , for µ = (?ω ). It is easy to see that K∼

µλ – the class of formulas symmetrical to
the formulas in Kµλ – coincides with Kµ∼λ∼ . Therefore, IL = K(?·)∼(×?)∼ = K(·?)(?×) , etc.

2.8 Since in each class I - III there is one axiom from A2 or A3 , all formulas from these six
classes are derivable from A1 - A3 .
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1. On a Generalization of the Ajdukiewicz-Lambek System

2.9 Let us find some other axiomatizations equivalent to A1 - A4 .

Theorem 2. The system A1 - A4 is equivalent to the following system defined with preorder
axioms, monotonicity axioms for all operations, axioms of neutrality for 1 and I , and axioms
of the insertion-cancellation type

(IC)

a · (a\x) ≤ x x ≤ a\(a · x)
(x/a) · a ≤ x x ≤ (x · a)/a
a .. (a× x) ≤ x x ≤ a× (a .. x)
(x× a) .. a ≤ x x ≤ (x .. a)× x)

The other axioms may vary with the choice of one inequality from each of the classes I - III and
symmetrical to these classes.

Proof. It follows from 2.6, 2.8, and a well-known fact that LAµ can be replaced with AMµ ,
AMµ⊥ , and inequalities aµaµ⊥x ≤ x , x ≤ aµ⊥aµx .

2.10 Let us write an axiomatization obtained by weakening the axioms A1 . Namely, in A1.1
and A1.2 put x = 1 , and in A1.3 and A1.4 put x = I and y = 1 . The set of axioms obtained
we will denote as A1− .

Theorem 3. The system A1 - A4 is equivalent to the conjunction of

A1−
1. a ≤ b⇔ 1 ≤ a\b 2. a ≤ b⇔ 1 ≤ b/a
3. 1 ≤ a⇔ a .. 1 ≤ I 4. 1 ≤ a⇔ 1 .. a ≤ I

(instead of A1 ),

A2+ 1. (a · b)\c = b\(a\c) 2. c/(b · a) = (c/a)/b
3. (a× b) .. c = b .. (a .. c) 4. c .. (b× a) = (c .. a) .. b

(instead of A2 ), A3 , A4 , and

A5
1. (a .. b)\I ≤ b\a 2. I/(b .. a) ≤ a/b
3. b .. a ≤ (a\b) .. 1 4. a .. b ≤ 1 .. (b/a)

Proof. 2.8 shows that all the formulas are consequences of A1 - A4 :

IIR.4 & IIL.5 =⇒ A2+.1 IIL.4 & IIL.5 =⇒ A2+.2
IIIL.4 & IIIR.5 =⇒ A2+.3 IIIR.4 & IIIL.5 =⇒ A2+.4

IR.4 (for c = I) =⇒ A5.1 IL.4 (for c = I) =⇒ A5.2
IR.5 (for c = 1) =⇒ A5.3 IL.5 (for c = 1) =⇒ A5.4

In the other direction, we prove A1.1 :

a · x ≤ y
A1−.1⇐⇒ 1 ≤ (a · x)\y A2+.1⇐⇒ 1 ≤ x\(a\y) A1−.1⇐⇒ x ≤ a\b.

A1.3 follows from the equivalence b ≤ a⇔ a .. b ≤ I proven below dualizing the previous proof.

b ≤ a
A1−.1=⇒ 1 ≤ b\a A1−.3=⇒ (b\a) .. 1 ≤ I A5.3=⇒ a .. b ≤ I A1−.1=⇒ 1 ≤ (a .. b)\I A5.1=⇒ 1 ≤ b\a A1−.1=⇒ b ≤ a

Axioms A2 follow from A2+ by 2.6.
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Negations and consequences of additional axioms

1.3 Negations and consequences of additional axioms

3.1 Convention: Instead of \ , / , × , .. , .. , I , we will write ⊃ , ⊂ , + , ÷ , − , 0 respectively,
i.e.

a ⊃ b 
 a\b b ⊂ a 
 b/a
a÷ b 
 a .. b b− a 
 b .. a
a + b 
 a× b 0 
 I

3.2 We introduce four negations:

¬L a 
 a ⊃ 0 ¬R a 
 0 ⊂ a
−L a 
 a÷ 1 −R a 
 1− a

3.3 The following theorem shows interaction between the negations, the constants 0 , 1 , and
the system operations.

Theorem 4. A1-A4 implies:

1. ¬L a + b ≤ a ⊃ b ≤ −R a + b b · −R a ≥ b− a ≥ b · ¬L a
2. ¬L a ≤ −R a
3. a ≤ ¬R ¬L a a ≥ −L−R a
4. ¬L 1 = 0 = −R 1 −R 0 = 1 = ¬L 0
5. ¬L b + ¬L a ≤ ¬L(a · b) ≤ −R b + ¬L a −R a · −R b ≥ −R(b + a) ≥ −R a · ¬L b
6. ¬L b · ¬L a ≤ ¬L(a + b) ≤ −R b · −R a −R a +−R b ≥ −R(b · a) ≥ ¬L a + ¬L b
7. ¬R(b− a) ≤ a ⊂ b −R(b ⊂ a) ≥ a− b
8. ¬R ¬L ¬R a = ¬R a −L−R−L a = −L a
9. a ⊃ b ≤ ¬L a ⊂ ¬L b b− a ≥ −R b÷−R a
10. ¬L−L a · ¬L−L b ≤ ¬L−L(a · b) −L ¬L a +−L ¬L b ≥ −L ¬L(a + b)
11. ¬L−L(a ⊃ b) ≤ ¬L−L a ⊃ ¬L−L b −R ¬R(b− a) ≥ −R ¬R b−−R ¬R a
12. 1 ⊃ a = a a− 0 = a
13. 0 ⊃ a = 1 + a a− 1 = a · 0

and inequalities symmetrical to the ones above.

Proof. We will prove only inequalities of the left column.
(1) follows from IL.2 with c = I , and from IR.6 with a = 1 .
(2) follows from (1) with b = 0 .
(3) follows from a ≤ ¬R ¬L a⇔ a · (a ⊃ 0) ≤ 0 .
(4) For this, substitute a = 1 in (2) and get ¬L 1 ≤ 1 − 1 ≤ 0 . Also, 0 ≤ 1 ⊃ 0 , because
1 · 0 ≤ 0 . Therefore, ¬L 1 = 0 . Since 1 ≤ 0 + 1 , then 1 − 1 ≤ 0 . On the other hand, from
the right column of (1) , using b = a = 1 , we get 1 · ¬L 1 ≤ 1− 1 , i.e. 0 ≤ 1− 1 . Therefore,
0 = −R 1 .
(5) IIR.4 (with c = 0) =⇒ ¬L(a · b) ≤ b ⊃ ¬L a . IIL.5 (with a = 0) =⇒ b ⊃ ¬L a ≤ ¬L(a · b) .
So, we have ¬L(a · b) = b ⊃ ¬L a . Applying inequalities from (1) to b ⊃ ¬L a , we get (5) .
(6) The left inequality follows from (a + b) · (¬L b · ¬L a) ≤ (a + (b · (b ⊃ 0))) · (a ⊃ 0) ≤ a · (a ⊃
0) ≤ 0 . Right inequality we get first increasing ¬L(a + b) to −R(a + b) (with the help of (2)),
and then applying (5) (right column).
(7) follows from IL.4 when c = 0 .

9



1. On a Generalization of the Ajdukiewicz-Lambek System

(8) Use (3) where a 
 ¬R a , and an inequality symmetrical to (3) applying ¬R which reverses
the order.
(9) Since a · ((a ⊃ b) · ¬L b) ≤ b · (b ⊃ 0) ≤ 0 , one gets (a ⊃ b) · ¬L b ≤ ¬L a .
(10) (6) and an inequality symmetrical to (6) (using the antitonicity of ¬L ) give ¬L−L a ·
¬L−L b ≤ ¬L(−L b +−L a) ≤ ¬L−L(a · b)
(11) Replace in (10) b with a ⊃ b , and ¬L−L(a · (a ⊃ b)) with bigger ¬L−L b .
(12) 1 ⊃ a ≤ 1 · (1 ⊃ a) ≤ a gives (12) .
(13) follows from (1) and (4) with a = 0 .

3.4. Let us see what happens when we add to the system A1-A4 some other axioms.

3.4.1. Consider the laws of excluded middle:

1 ≤ ¬L a+a (the left law of excluded middle), 1 ≤ a+¬R a (the right law of excluded middle).

The left law of excluded middle is equivalent to −R a ≤ ¬L a , i.e. to the reverse of (2) from
theorem 4. Therefore, adding the laws of excluded middle leads to the coincidence of negations
−R a = ¬L a , which we denote by ∼L a . Similarly, ∼R a = ¬R a = −L a . Operations ∼L and
∼R we will call the left and right complement respectively. With these negations, we can express
the implication and the subtraction (with the help of (1) taken from theorem 4):

a ⊃ b = ∼L a + b
b− a = b · ∼L a

(†)

Inequalities (3), (5) and (6) from theorem 4 imply:

∼R∼L a = a (cancellation of the double oppositely directed complements)

∼L(a + b) = ∼L b · ∼L a
∼L(b · a) = ∼L b +∼L a

}
(de Morgan laws)

Obviously, the symmetrical equalities also hold. These equalities make it possible to express all
operations with the multiplications and the complements.
Furthermore, the inequalities from the groups IVL and IVR become derivable. Indeed, IVR.2
becomes a valid statement: ∼L b + (c + a) ≤ (∼L b + c) + a . By virtue of 2.6, one implies that
all inequalities in IVR are derivable. On the other hand, the left law of excluded middle follows
from any formula of IVR . Substituting c = 0 = I in IVR.2 , we get a ⊃ b ≤ ∼L a + b , from
where with b = a we get the left law of excluded middle.

3.4.2. In the signature (≤, ·, +, ∼L, ∼R, 0, 1) the class of systems satisfying A1-A4 and the
laws of excluded middle can be postulated with the following axioms:

Ã1.
a · ∼L a ≤ 0 ∼R a · a ≤ 0
1 ≤ a +∼R a 1 ≤ ∼L a + a

together with A2, A3, A4 and the monotonicity axioms for · and + .

This follows from the fact that, having defined implications and subtractions in a system B =
(B; ≤, +, ∼L, ∼R, 0, 1) using the equalities of (†) and their symmetrical variants, we get
a system B+ satisfying A1-A4. The transitions B 7→ B+ and A 7→ Ã are mutually inverse.
Here Ã denotes a system A without implications and subtractions, but with complements.
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Negations and consequences of additional axioms

3.4.3. Let us call the following inequalities as the axioms of complement: 1 ≤ a + ¬L a ,
1 ≤ ¬R a + a (remember: + is still not commutative). Adding these two axioms to A1-A4
makes all four negations equal. Indeed, the axioms imply −L a ≤ ¬L a and −R a ≤ ¬R a .
Therefore, ¬R a ≤ −L a ≤ ¬L a ≤ −R a ≤ ¬R a . Let

ā 
 ∼L a = ∼R a

Then the axioms Ã1 become:

Ā1.
a · ā ≤ 0 ā · a ≤ 0
1 ≤ a + ā 1 ≤ ā + a

3.4.4. If, in addition to the axioms of complement, we consider the following one: x ·y = x+y ,
then 0 = 1 , and the formulas Ā1 express that ā is the inverse element. Therefore, we get the
axioms of ordered groups.

3.4.5. Now consider the axiom 0 ≤ x ≤ 1 . It is equivalent to the equalities 0·a = 0 , b+1 = 1 ,
and to the inequalities a1 ·a2 ≤ ai , ai ≤ a1 +a2 , i = 1, 2 . Indeed, A3.1 (for b = 0) =⇒ 0 ≤ a ,
similarly A3.1 (for a = 1) =⇒ b ≤ 1 .
Adding the axiom 0 ≤ x ≤ 1 and idempotency axioms x ·x = x , x + x = x to A1-A4 gives the
axiomatization of Heyting-Brouwer algebras.

3.4.6. A1-A4 plus commutativity of · and + , plus 0 ≤ x ≤ 1 , and plus the laws of excluded
middle form the axiomatization of L◦ -algebras considered in [5]. Notice that commutativity
follows from Kµλ for appropriate µ and λ . For example, we can obtain the inequality x·y ≤ y·x
from the formula (3) of Kµλ assuming µ = (·?) , λ = (⊃ ?) , and c = 1 .

3.4.7. We call equalities xq +xq = xq and qx·qy = qx as q -idempotency, where q is a positive
integer and

xq 
 x · · · · · x︸ ︷︷ ︸
q times

qx 
 x + . . . + x︸ ︷︷ ︸
q times

Adding q -idempotency to the axioms of L◦ -algebras, one gets the L◦q -algebras (see [5]). The
case q = 2 gives rise to the class L◦2 , which is adequate to three-valued  Lukasiewicz logic. If
we add the axioms of q -idempotency to the group axioms, they will transform into xq = 1 , so
we get ordered periodical groups, or, simply, periodical groups, because in this case any order is
just equality ( 1 ≤ x =⇒ x ≤ x2 ≤ . . . ≤ xq = 1 ).

3.4.8. Axioms A1-A4 plus Chang’s axioms

(x− y) + y = (y − x) + x, y · (y ⊃ x) = x · (x ⊃ y)

(see [2]) imply that the order is a lattice. Disjunction and conjunction are defined as:

x ∨ y 
 (x− y) + y x ∧ y 
 x · (x ⊃ y)

Indeed, (x − x) + x ≤ 0 + x = x , x ≤ (x − y) + y , y ≤ (y − x) + x = (x − y) + y . The
operation (x, y) 7→ (x− y) + y is obviously monotonous in its first argument, and, from Chang’s
axioms, also in the second. Therefore, (x ≤ c) & (y ≤ c) =⇒ (x − y) + y ≤ (c − c) + c ≤ c ,
i.e. (x − y) + y = supremum{x, y} . We treat the conjunction analogously. The axioms of
L◦ -algebras together with Chang’s axioms give an axiomatization of Chang’s MV -algebras.
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3.5. In the table below “+” marks those axioms (properties) which it is enough to add to A1-A4
to obtain the class of algebraic systems from the appropriate row. Symbol “(+)” will denote the
properties that hold in each system of the class in the appropriate row, whereas “–” symbolizes
properties that do not hold at least in one system of the class.

Properties
1 2 3 4 5 6 7 8

Classes of axioms com- idem- 2-idem- q-idem-
algebras of comp- x · y = muta- 0 ≤ x po- po- potency Chang’s

lement x + y tivity x ≤ 1 tency tency (q ≥ 3) axioms

1. Heyting-Brouwer
algebras – – (+) + + (+) (+) (+)

2. Boolean algebras + – (+) + + (+) (+) (+)

3. Ordered groups + + – – – – – –

4. Periodical groups
of exponent q + + – – – – + –

5. L◦-algebras adequate
to a logic without
contraction rules + – + + – – – –

6. Variety generated
by 3-elements  Lu-
kasiewicz algebra + – + + – + (+) (+)

7. L◦q -algebras + – + + – – + –

8. Chang’s MV -
algebras + – + + – – – +

For example, the axioms A1-A4 plus the properties 4 and 5 give Heyting-Brouwer algebras,
satisfying the properties 3, 6, 7, 8. Properies 1 and 2 are not valid in the whole class.
Symbols “(+)” and “–” do not require any additional explanation, except for the following cases.
The interval [0,1] of real numbers considered as a  Lukasiewicz algebra is a Chang MV -algebra.
There q -idempotency (for any q ) does not hold. This explains the “–” symbol in the following
table cells: (5,5), (5,6), (5,7), (8,5), (8,6), (8,7).
For L◦ -algebras

∀x (xq + xq = xq) =⇒ ∀x (xp + xp = xp) for p ≥ q.

Indeed, simple L◦q -algebras can be characterized with the condition ∀x 6= 1 (xq = 0) (see
[5]). From this one gets ∀x 6= 1 (xp = 0) when p ≥ q . Therefore, every simple L◦q -algebra
is a simple L◦p -algebra when p ≥ q . Furthermore, every L◦q -algebra can be represented as a
subdirect product of simple L◦q -algebras ([5]). Thus, every L◦q -algebra is an L◦p -algebra ( p ≥ q )
as well. That explains “(+)” in the (6,7)-cell.
As it was shown in [4], there are only two simple L◦2 -algebras: {0,1} — two-element Boolean
algebra, and {0, 1

2 , 1} — three-element  Lukasiewicz algebra. Therefore, the variety of L◦2 -
algebras is generated by the three-element  Lukasiewicz algebra. Thus, in the cells (6,7) and (6,8)
we have “(+)”.
In the case of q ≥ 3 , the q -element  Lukasiewicz algebra

{0,
1

q − 1
,

2
q − 1

, . . . ,
q − 2
q − 1

, 1},

which is an L◦q−1 -algebra, does not satisfy 1- and 2-idempotency. Therefore, there are “–”
symbols in (7,5) and (7,6).
The set {0, m, a, b, M, 1} with operations x 7→ x̄ , (x, y) 7→ x · y , (x, y) 7→ x + y defined
below and ordered as shown
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Deduction theorem and normal filters

a0 = 1̄

a
m = M̄

a a = b̄ ab = ā

aM = m̄

a1 = 0̄

6

�
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@
@I

�
��

@
@I

6

x · y =

8>><>>:
0, if x ≤ ȳ
x, if y = 1
y, if x = 1
m, otherwise

x + y = (x̄ · ȳ)

is a simple L◦q -algebra (for any q ≥ 3 ) which satisfies (a − b) + b = a · b̄ = a2 + b = m + b =
0 6= a ∨ b . Therefore, we have “–” in (5,8) and (7,8).

1.4 Deduction theorem and normal filters

4.1. Now we are going to find a calculus which would describe the class of formulas greater
than 1 in a free system satisfying A1-A4. This free system is obtained in the following way.
Consider a set of formulas generated from a set of propositional letters (the generators of the
system) using the operations of the A1-A4 system. If we consider the postulated inequalities in
the system as axiom schemes, and the implications (equivalence is two implications) as rules of
derivation, we get a free calculus which imposes an order on the set of formulas. So the axiom
schemes are PO1, A2, A3, A4 , the rules of derivation are PO2, A1 . Inequalities of the sort
X ≤ Y , where X and Y are any formulas constructed as it was described above, we will state
X −→ Y for sequents. Thus, X ≤ Y holds in the free system iff the sequent X −→ Y is
derivable in the free calculus described. An arbitrary system satisfying A1-A4 can be obtained
from the free system by adding a set of particular sequents as new axioms that can be used in a
proof as many times as it is required.

4.2 We describe a calculus J generating the set of all elements of the free system greater than
1 . The objects of the calculus are formulas in the sense specified in 4.1. Letters X, Y, Z denote
arbitrary formulas. Notations ⊃ , ⊂ , − , ÷ , + , 0 , ¬L , ¬R , −L , −R are described in 3.1
and 3.2.

Axioms and axiom schemes of the calculus J.

L1. 1
L2. X ⊃ (1 ⊃ X) (X ⊂ 1) ⊂ X
L2. ((X · Y ) ⊃ Z) ⊃ (Y ⊃ (X ⊃ Z)) (Z ⊂ (Y ·X)) ⊂ ((Z ⊂ X) ⊂ Y )
L4. (Y ⊃ (X ⊃ Z)) ⊃ ((X · Y ) ⊃ Z) ((Z ⊂ X) ⊂ Y ) ⊂ (Z ⊂ (Y ·X))
L5. (Y ⊃ Z) ⊃ ((X ⊃ Y ) ⊃ (X ⊃ Z))
L6. ((X ⊃ Y ) + Z) ⊃ (X ⊃ (Y + Z)) (Z + (Y ⊂ X)) ⊃ ((Z + Y ) ⊂ X)
L7. 1 ⊃ (0 + 1) 1 ⊃ (1 + 0)
L8. (X + 0) ⊃ X (0 + X) ⊃ X
L9. (X − (Y + Z)) ⊃ ((X − Z)− Y ) ((Z + Y )÷X) ⊃ (Y ÷ (Z ÷X))
L10. ((X − Z)− Y ) ⊃ (X − (Y + Z)) (Y ÷ (Z ÷X)) ⊃ ((Z + Y )÷X)
L11. ¬R(X − Y ) ⊃ (Y ⊂ X) ¬L(Y ÷X) ⊃ (X ⊃ Y )
L12. (Y −X) ⊃ −R(X ⊂ Y ) (X ÷ Y ) ⊃ −L(Y −X)
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Rules of derivation of J

(R1)L
X X ⊃ Y

Y
(R1)R

Y ⊂ X X
Y

(R2)A
L

X ⊂ A
A ⊃ X

(R2)A
R

A ⊃ X
X ⊂ A

(R3)L
X

¬L−L X
(R2)R

X
¬R−R X

4.3 Let S be a set of sequents, and Sφ a set of all formulas A ⊃ B such that A −→ B is
in S .

Theorem 5. A sequent X −→ Y is derivable from a set of sequents S (in the free calculus)
iff a formula X ⊃ Y is derivable in J from the set of formulas Sφ .
Proof. It is enough to show that if X −→ Y is derivable from S in the calculus corresponding
to the axiomatization in 2.10, then X ⊃ Y is derivable from Sφ in the calculus J.
The axiom X −→ X becomes the formula X ⊃ X which can be derived in the following way:

(R1)R

(R1)R

(R1)L

L2

X ⊃ (1 ⊃ X)

L4

(X ⊃ (1 ⊃ X)) ⊃ (1 ·X ⊃ X)

(R2)X
R

1 ·X ⊃ X

X ⊂ 1 ·X L4

(X ⊂ X) ⊂ 1 1

(R2)X
L

X ⊂ X

X ⊃ X

Transitivity is derived using L5 . The rules A1− become rules derivable from L1 , L2 and
R1 - R3 . The axioms A2+ are translated into L3, L4, L9, L10 . The axioms A3 (in fact,
formulas IR(2) and IL(2) from 2.7 are equivalent to A3 in the presence of A1 (see 2.6 and
2.10)) become L6 . A5 become L11 , L12 . The formula 1 ·X ⊃ X follows from L2 and L4 .
Analogously, one gets X ⊂ X · 1 and then X · 1 ⊃ X (using R2 ). From the derivable formula
(1 · X ⊂ X) ⊂ 1 we get 1 · X ⊂ X , and from that X ⊃ 1 · X . The sequent X −→ 0 + X
follows from 1 −→ 0 + 1 (indeed, X −→ 1 ·X −→ (0 + 1) ·X −→ 0 + 1 ·X −→ 0 + X ).

4.4 Now consider the deduction theorem for J .
The rules

(R∗2)A
L

X

A ⊃ (X ·A)
(R∗2)A

R

X

(A ·X) ⊂ A

are called the rules of adjointness. They are derivable in J . Indeed, the formula ((X ·A ⊂ A) ⊂
X) ⊂ (X · A ⊂ X · A) is the axiom L4 . Therefore, the formula (X · A ⊂ A) ⊂ X is derivable
in J . From X we can derive (X ·A) ⊂ A , and then using (R2)A

L , we get A ⊃ (X ·A) .
Let d be a proof (possibly from hypotheses). Let dJ be the sequence of hypotheses in d taken
from left to right. For example, if d is obtained from d1 and d2 by (R1)L , then dJ = dJ

1dJ
2 .

If d is just a formula A , dJ = A in the case A is not axiom, otherwise dJ is empty. We will

write Γ
d

` A , if d is a proof in J of the formula A from hypotheses and dJ = Γ . Γ` A means

that there exists d such that Γ
d

` A . The result of application (step by step) of one-argument
rules R1, R2, . . . , Rm to a formula H will be denoted as Rm . . . R1H
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The deduction theorem. Let ΓH∆
d

` B , and R1, . . . , Rm be the sequence of R2 or R3
rules which are on the path below the given occurrence of H . Then there exists a proof d′ such

that Γ∆
d

` (R′
m . . . R′

1H) ⊃ B , where

R′
i =


(R∗2)A

L , if Ri = (R2)A
L

(R∗2)A
R , if Ri = (R2)A

R

Ri, if Ri is R3 rule

Proof. If d is just one formula B 
 H , then m = 0 , and the theorem is an obvious statement

`B ⊃ B . Let Γ1HΓ2

d1

` X , and ∆
d2

` X ⊃ B , and the derivation d be obtained by (R1)L
from d1 and d2 . Let R1, . . . , Rm be the sequence of R2 and R3 rules taken for d1 and a

particular occurrence of H . By the induction hypothesis, Γ1Γ2

d′1
` (R′

m . . . R′
1H) ⊃ X . From

d′1 and d2 we get d′ in an obvious way.

Let Γ
d1

` X , ∆1H∆2

d2

` X ⊃ B , and R1, . . . , Rm be the sequence of the rules R2 and

R3 for d2 and H , and H ′ 
 R′
m . . . R′

1H . By the induction hypothesis, ∆1∆2

d′2
` H ′ ⊃

(X ⊃ B) ` X · H ′ ⊃ B ` B ⊂ X · H ′ ` (B ⊂ H ′) ⊂ X ` X ⊃ (B ⊂ H ′) , and therefore

Γ∆1∆2

d′

` B ⊂ H ′ ` H ′ ⊃ B , for some d′ .

Let Γ1HΓ2

d1

` B ⊂ A , and R1, . . . , Rm be the appropriate sequence of R2 and R3 , H ′ 

R′

m . . . R′
1H , and the proof d be obtained from d1 by (R2)A

L . Again, the induction hypothesis

gives Γ1Γ2

d′1
` H ′ ⊃ (B ⊂ A) , and from that Γ1Γ2`H ′ ·A ⊃ B . Since `A·(A ⊃ H ′ ·A) ⊃ H ′ ·A ,

we have Γ1Γ2` (A ⊃ H ′ ·A) ⊃ (A ⊃ B) , i.e. Γ1Γ2` (R∗2)A
L H ′ ⊃ (A ⊃ B) , which was necessary

to prove.

Let Γ1HΓ2

d1

` B , and d be obtained from d1 applying (R3)L . Let R1, . . . , Rm be the

appropriate sequence of R2 and R3 for d and H . By the induction hypothesis, Γ1Γ2

d′1
`

(R′
m . . . R′

1H) ⊃ B ` ¬L−L((R′
m . . . R′

1H) ⊃ B) . From (11) in theorem 4, we have Γ1Γ2 `
((R3)LR′

m . . . R′
1H) ⊃ ¬L−L B .

Corollary. Suppose that a formula A is derivable from a set of formulas S ∪H . Then there
exist formulas H1, . . . , Hm derivable from H using R∗2 and R3 , such that H1 · . . . ·Hm ⊃ A
is derivable from the set S .

4.5 Now we introduce a notion generalizing the notion of the normal divisor in groups and the
notion of the filter in Heyting-Brouwer algebras.
We will call a subset ∇ ⊂ A of an algebraic system satisfying A1-A4 a normal filter iff

1. 1 ∈ ∇

2. x ∈ ∇ & y ∈ ∇ =⇒ x · y ∈ ∇

3. x ∈ ∇ & x ≤ y =⇒ y ∈ ∇
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4. x ∈ ∇ =⇒ a\(x · a) ∈ ∇ & (a · x)/a ∈ ∇ for a ∈ A

5. x ∈ ∇ =⇒ ¬L−L x ∈ ∇ & ¬R−R x ∈ ∇

If A = (A; ≤A, ·, \, /, 1, ×, .., .., I ) is an A1-A4 system, MO(A) stands for the partially
ordered (by inclusion) set of all preorders on A containing the preorder ≤A and satisfying the
monotonicity axioms AM (see 1.1). We will write x ≤θ y iff (x, y) ∈ θ for θ ∈ MO(A) . Let
NF (A) be the set of all normal filters on A ordered by inclusion.

Theorem 6. The sets MO(A) and NF (A) are complete lattices isomorphic to each other.
The isomorphism is given by

MO(A)→ NF (A) NF (A)→MO(A)
θ 7→ ∇θ = {a ∈ A : 1 ≤θ a} ∇ 7→ θ∇ = {(a, b) ∈ A×A : a\b ∈ ∇}

Proof. By virtue of 2.9, every preorder from MO(A) satisfies A1-A4. Therefore, the set ∇θ is
a normal filter.
We can consider the preorder ≤A as being given by some set S of sequents added to the free
system (see 4.1). Let us construct the set Sφ as in 4.3. Let ∇ be a normal filter. Applying
(several times) the corollary after the deduction theorem, we get:

B is derivable from Sφ∪∆ iff there exist formulas H1, . . . , Hk derivable by (R∗2)
and (R3) from the formulas in ∇ , such that H1 · . . . ·Hk ⊃ B is derivable from Sφ .

By theorem 5 from 4.3, H1 · . . . · Hk ≤A B . Since ∇ is a normal filter, H1 · . . . · Hk ∈ ∇ ,
and therefore, B ∈ ∇ . Thus, (a, b) ∈ θ∇ iff the sequent a −→ b is derivable from the set
S ∪ {1 −→ x : x ∈ ∇} . By virtue of 4.1, θ∇ satisfies A1-A4, i.e. θ∇ ∈MO(A) .
Let us check that θ 7→ ∇θ and ∇ 7→ θ∇ are mutually inverse. Let θ0 ∈MO(A) and θ1 = θ∇θ0

.
Then

a ≤θ1 b⇔ a\b ∈ ∇θ0 ⇔ 1 ≤θ0 a\b⇔ a ≤θ0 b.

Let ∇0 ∈ NF (A) and ∇1 = ∇θ∇0
. Then

a ∈ ∇1 ⇔ 1 ≤θ a⇔ 1\a ∈ ∇0 ⇔ a ∈ ∇0.

4.6. Intersection of all normal filters containing a set M is called the normal filter generated by
M . Notice that the normal filter generated by M comprises all a ∈ A for which there are some
x1, . . . , xn obtained from R∗2 and R3 from some elements of M , such that x1 · . . . · xn ≤A a .

4.7. If A is a (non-ordered) group, i.e. ≤A is symmetrical and x · y = x × y , the set
H = {x ∈ ∇ : x−1 ∈ ∇} , where ∇ is a normal filter, is a normal divisor, and ∇ becomes a
positive cone of some order on the factor group A/H . If A is a periodical group, the definition
4.5 is the definition of a normal divisor. If A is a Heyting-Brouwer algebra, then 4.5 is the
definition of the

LL
filter in the sense of [7].
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Symmetries in natural language syntax and
semantics: the Lambek-Grishin calculus

Michael Moortgat

Abstract In this paper, we explore the Lambek-Grishin calculus LG: a symmetric version
of categorial grammar based on the generalizations of Lambek calculus studied in Grishin [13].
The vocabulary of LG complements the Lambek product and its left and right residuals with
a dual family of type-forming operations: coproduct, left and right difference. The two families
interact by means of structure-preserving distributivity principles. We present an axiomatization
of LG in the style of Curry’s combinatory logic and establish its decidability. We discuss Kripke
models and Curry-Howard interpretation for LG and characterize its notion of type similarity in
comparison with the other categorial systems. From the linguistic point of view, we show that
LG naturally accommodates non-local semantic construal and displacement — phenomena that
are problematic for the original Lambek calculi.

Thanks Linguistic exploration of Lambek-Grishin calculus started at ESSLLI’04 (Nancy) in
discussion with Raffaella Bernardi and Rajeev Goré; I thank them, and Natasha Kurtonina, for
the stimulating exchange of ideas throughout the period reported on here. The material of this
paper was the subject of a series of lectures at Moscow State University (Sept 2006, April 2007).
I thank Mati Pentus and Barbara Partee for accommodating these talks in their seminars and
for providing such perceptive audiences. The support of the Dutch-Russian cooperation program
NWO/RFBR, project No. 047.017.014 “Logical models of human and mechanical reasoning” is
gratefully acknowledged.

2.1 Background

The basic Lambek calculus [18] is a logic without any structural rules: grammatical material
cannot be duplicated or erased without affecting well-formedness (absence of Contraction and
Weakening); moreover, structural rules affecting word order and constituent structure (Commu-
tativity and Associativity) are unavailable. What remains (in addition to the preorder axioms
for derivability) is the pure logic of residuation of (2.1).

19



2. The Lambek-Grishin calculus

residuated triple A→ C/B iff A⊗B → C iff B → A\C (2.1)

The type-forming operations have two kinds of semantics. One is a structural semantics, where
they are interpreted with respect to a ternary composition relation (or ‘Merge’, as it is called in
generative grammar). The truth conditions for this interpretation are given in (2.2); one finds the
basic soundness/completeness results in [9]. The second interpretation is a computational one,
along the lines of the Curry-Howard formulas-as-types program. Under this second interpreta-
tion, Lambek derivations are associated with a linear (and structure-sensitive) sublanguage of the
lambda terms one obtains for proofs in positive Intuitionistic logic. The slashes /, \ here are seen
as directional implications; elimination of these operations corresponds to function application,
introduction to lambda abstraction.

x  A⊗B iff ∃yz.R⊗xyz and y  A and z  B
y  C/B iff ∀xz.(R⊗xyz and z  B) implies x  C
z  A\C iff ∀xy.(R⊗xyz and y  A) implies x  C

(2.2)

The original Lambek calculus, like its predecessors the Ajdukiewicz/Bar Hillel (AB) calculi,
and later systems such as Combinatory Categorial Grammar (CCG), adequately deals with
linguistic subcategorization or valency. It greatly improves on AB and CCG systems in fully
supporting hypothetical reasoning: the bidirectional implications of the residuation laws are fully
symmetric with respect to putting together larger phrases out of their subphrases, and taking apart
compound phrases in their constituent parts. AB systems lack the second feature completely; the
combinatory schemata of CCG provide only a weak approximation. Consequences of hypothetical
reasoning are the theorems of type lifting and argument lowering of (2.3) below; type transitions
of this kind have played an important role in our understanding of natural language semantics.

A→ B/(A\B) (B/(A\B))\B → A\B (2.3)

It is ironic that precisely in the hypothetical reasoning component the Lambek grammars turn
out to be deficient. As one sees in (2.3), hypothetical reasoning typically involves higher order
types, where a slash occurs in a negative environment as in the schema (2.4) below. Given
Curry-Howard assumptions, the associated instruction for meaning assembly has an application,
corresponding to the elimination of the main connective /, and an abstraction, corresponding to
the introduction of the embedded \.

C/(A\B) (M λxA.NB)C (2.4)

The minimal Lambek calculus falls short in its characterization of which A-type hypotheses are
‘visible’ for the slash introduction rule: for the residuation rules to be applicable, the hypothesis
has to be structurally peripheral (left peripheral for \, right peripheral for /). One can distinguish
two kinds of problems.

Displacement The A-type hypothesis occurs internally within the domain of type B. Metaphor-
ically, the functor C/(A\B) seems to be displaced from the site of the hypothesis. Example:
wh ‘movement’.

Non-local semantic construal The functor (e.g. C/(A\B)) occupies the structural position
where in fact the A-type hypothesis is needed, and realizes its semantic effect at a higher
structural level. (The converse of the above.) Example: quantifying expressions.
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Figure 2.1: The Lambek hierarchy

The initial reaction to these problems has been to extend the basic system with structural rules
of Associativity and/or Commutativity, resulting in the hierarchy of Fig 2.1. From a linguistic
point of view, a global implementation of these structural options is undesirable, as it entails a
complete loss of sensitivity for word order and/or constituent structure.
A significant enhancement of the Lambek systems occurred in the mid Nineties of the last century,
when the vocabulary was extended with a pair of unary type-forming operations (Moortgat [20]).
Like their binary relatives, ♦,� form a residuated pair, satisfying (2.5), and with interpretation
(2.6).

residuated pair ♦A→ B iff A→ �B (2.5)

x  ♦A iff ∃y (R♦xy and y  A)
y  �A iff ∀x (R♦xy implies x  A) (2.6)

From a purely logic point of view, the unary modalities introduce facilities for subtyping, in the
sense that any type A is now derivationally related to a more specific type ♦�A and a more
general type �♦A.

♦�A→ A→ �♦A (2.7)

Bernardi [2] makes good use of the patterns in (2.7) to fine-tune the construal of scope-bearing
expressions, and to capture the selectional restrictions governing the distribution of polarity
sensitive items. In addition to this logical use of ♦,�, one can also use them to provide controlled
versions of structural rules that, in a global form, would be deleterious. The set of postulates
in (2.8) make left branches (P1, P2) or right branches (P3, P4) accessible for hypothetical
reasoning.

(P1) ♦A⊗ (B ⊗ C)→ (♦A⊗B)⊗ C (C ⊗B)⊗ ♦A→ C ⊗ (B ⊗ ♦A) (P3)
(P2) ♦A⊗ (B ⊗ C)→ B ⊗ (♦A⊗ C) (C ⊗B)⊗ ♦A→ (C ⊗ ♦A)⊗B (P4) (2.8)

Vermaat [27] uses these postulates in a cross-linguistic study of wh extraction constructions,
relating the choice between P1, P2 and P3, P4 to the typological distinction between head-
initial versus head-final languages.

Structural control The general situation with respect to the expressivity of modally con-
trolled structural rules is captured by Thm 2.1.1. We consider a source logic L and a target
logic, which is either an upward (L↑) or a downward (L↓) neighbor in the Lambek hierarchy.
The target logic has control modalities ♦,� which are lacking in the source logic. In terms of
these modalities, one defines translations from the formulas of the source logic to the formulas
of the target logic. The ·↓ translations impose the structure-sensitivity of the source logic in a
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2. The Lambek-Grishin calculus

logic with a more liberal structural regime; the ·↑ translations recover the flexibility of an upward
neighbor by adding R♦ — the image under ·↑ of the structural rules that discriminate source
from target. An example is the translation (A ⊗ B)↓ = ♦(A↓ ⊗ B↓), which blocks associativity
by removing the structural conditions for its application.

Theorem 2.1.1 Structural control (Kurtonina and Moortgat [15]). For logics L, L↑, L↓ and
translations ·↓ and ·↑ as defined above,

L ` A→ B iff L↑♦ ` A↓ → B↓ constraining

L ` A→ B iff L↓♦ +R♦ ` A↑ → B↑ licensing

Summarizing Viewed from a foundational point of view, one can see Lambek-style categorial
grammars as modal logics of natural language resources. In such logics, the vocabulary for analyz-
ing the assembly of form and meaning consists of n-ary type-forming operations (or connectives,
under Curry’s formulas-as-types view); these operations are given a Kripke-style interpretation in
terms of (n+1)-ary ‘merge’/composition relations. Grammatical invariants, in this approach, are
laws that do not impose restrictions on the interpreting composition relations; language diversity
results from the combination of the invariant base logic with a set of non-logical axioms (and
the corresponding frame constraints). These axioms (possibly language-specific) characterize the
structural deformations under which the basic form-meaning correspondences are preserved. The
reader is referred to [21] for an overview of this line of work.

2.2 Lambek-Grishin calculus

Assessing the merits of the above approach, one can identify two problematic aspects. One is of a
computational nature, the other relates to the cognitive implications of the Lambek framework.

Complexity Structural rules (whether implemented globally or under modal control) are com-
putationally expensive. Whereas the basic Lambek calculus has a polynomial recognition
problem [8], already the simplest extension with an associative regime is known to be NP
complete [26]; one reaches a PSPACE upper bound for the extension with a ♦,� controlled
structural module consisting of resource-respecting (i.e. linear, non-expanding) axioms [24].

Invariants versus structural postulates On the cognitive level, the limited expressivity of
the standard vocabulary means one is forced to accept that a considerable part of gram-
matical organization is beyond the reach of the type-forming constants. By considering
a broader vocabulary of connectives it becomes possible to characterize larger portions of
a language’s grammar in terms of linguistic invariants, rather than through non-logical
postulates.

In a remarkable paper written in 1983, V.N. Grishin [13] has proposed a framework for generaliz-
ing the Lambek calculi that provides an alternative to the structural rule approach. The starting
point for Grishin’s generalization is a symmetric extension of the vocabulary of type-forming op-
erations: in addition to the familiar ⊗, \, / (product, left and right division), one also considers
a dual family ⊕,�,;: coproduct, right and left difference.1

1A little pronunciation dictionary: read B\A as ‘B under A’, A/B as ‘A over B’, B ; A as ‘B from A’ and
A�B as ‘A less B’.
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iff x ≤ gy gy ≤ x

fx ≤′ y
(−⊗,−/)
(⊗−, \−)

(−;,�−)
(�−,−;)

y ≤′ fx
(−\, /−)
(/−,−\)

(−⊕,−�)
(⊕−,;−)

Figure 2.2: Residuated and Galois connected pairs and their duals.

A,B ::= p | atoms: s sentence, np noun phrases, . . .
A⊗B | B\A | A/B | product, left vs right division
A⊕B | A�B | B ; A coproduct, right vs left difference

(2.9)

We saw that algebraically, the Lambek operators form a residuated triple; likewise, the ⊕ family
forms a dual residuated triple.

residuated triple A→ C/B iff A⊗B → C iff B → A\C
dual residuated triple B ; C → A iff C → B ⊕A iff C �A→ B

(2.10)

Dunn’s [10] framework of gaggle theory brings out the underlying algebraic structure in a partic-
ularly clear way. In Fig 2.2, we consider ordered sets (X,≤), (Y,≤′) with mappings f : X −→ Y ,
g : Y −→ X. In the categorial setting, we have X = Y = F (the set of types/formulas).
The pair of operations (f, g) is called residuated if it satisfies the defining biconditionals of the
upper left cell; the lower right cell characterizes dual residuated pairs. Whereas the concept of
residuation pairs the (co)product with a (co)implication, the closely related concept of (dual)
Galois connected pairs links the (co)implications among themselves. The defining biconditionals
fill the lower left and upper right cells. For ∗ ∈ {/,⊗, \,;,⊕,�}, we write −∗ (∗−) for the op-
eration that suffixes (prefixes) a fixed type to its operand, for example: A→ C/B iff B → A\C
instantiates the pattern (/−,−\).
The patterns of Fig 2.2 reveal that on the level of types and derivability the Lambek-Grishin
system exhibits two kinds of mirror symmetry characterized by the bidirectional translation
tables in (2.11): ./ is order-preserving, ∞ order-reversing: A./ → B./ iff A→ B iff B∞ → A∞.

./
C/D A⊗B B ⊕A D ; C

D\C B ⊗A A⊕B C �D
∞

C/B A⊗B A\C
B ; C B ⊕A C �A

(2.11)

Interaction principles The minimal symmetric categorial grammar (which we will refer to as
LG∅) is given by the preorder axioms for the derivability relation, together with the residuation
and dual residuation principles of (2.10). LG∅ by itself does not offer us the kind of expressivity
needed to address the problems discussed in §2.1. The real attraction of Grishin’s work derives
from the interaction principles he proposes for structure-preserving communication between the
⊗ and the ⊕ families. In all, the type system allows eight such principles, configured in two
groups of four. Consider first the group in (2.12) which we will collectively refer to as G↑.2

2In Grishin’s original paper, only one representative of each group is discussed; computation of the remaining
three is left to the reader. Earlier presentations of [13] such as [19, 12] omit G2 and G4. The full set of (2.12) is
essential for the intended linguistic applications.
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(G1) (A ; B)⊗ C → A ; (B ⊗ C) C ⊗ (B �A)→ (C ⊗B)�A (G3)
(G2) C ⊗ (A ; B)→ A ; (C ⊗B) (B �A)⊗ C → (B ⊗ C)�A (G4) (2.12)

On the lefthand side of the derivability arrow, one finds a ⊗ formula which has a formula with
the difference operation (A;B or B�A) in its first or second coordinate. The Grishin principles
rewrite this configuration in such a way that the difference operations ;, � become the main
connective. Combined with transitivity, the principles take the form of the inference rules in
(2.13).

A ; (B ⊗ C)→ D

(A ; B)⊗ C → D
G1

(A⊗B)� C → D

A⊗ (B � C)→ D
G3

B ; (A⊗ C)→ D

A⊗ (B ; C)→ D
G2

(A⊗ C)�B → D

(A�B)⊗ C → D
G4

(2.13)

These rules, from a backward-chaining perspective, have the effect of bringing the A subformula
to a position where it can be shifted to the righthand side of→ by means of the dual residuation
principles. The images of (2.12) under ·∞ are given in (2.14): in rule form, they rewrite a
configuration where a left or right slash is trapped within a ⊕ context into a configuration where
the A subformula can be shifted to the lefthand side of→ by means of the residuation principles.
One easily checks that the forms in (2.14) are derivable from (2.12) — the derivation of G1′ from
G1 is given as an example in (2.19).

(G1′) (C ⊕B)/A→ C ⊕ (B/A)
(G2′) (B ⊕ C)/A→ (B/A)⊕ C

A\(B ⊕ C)→ (A\B)⊕ C (G3′)
A\(C ⊕B)→ C ⊕ (A\B) (G4′) (2.14)

An alternative direction for generalizing the Lambek calculus is given by the converses of the
G↑ principles obtained by turning around the derivability arrow. We refer to these individually
as Gn−1, and to the group as G↓. The general picture that emerges is a landscape where the
minimal symmetric Lambek calculus LG∅ can be extended either with G1–G4 or with their
converses, or with the combination of the two. We discuss potential linguistic applications for
G↑ and G↓ in §2.3. First, we review some prooftheoretic and modeltheoretic results relating the
Lambek-Grishin calculus to the original Lambek systems. These results have focused on the
combination LG∅ + G↑, which in the remainder we will refer to simply as LG.

2.2.1 Decidable proof search

The axiomatization we have considered so far contains the rule of transitivity (from A→ B and
B → C conclude A→ C) which, in the presence of complexity-increasing type transitions, is an
unpleasant rule from a proof search perspective. For decidable proof search, we are interested in
an axiomatization which has transitivity as an admissible rule. Such an axiomatization for LG
can be given in terms of the identity axiom 1A : A→ A together with the residuation principles
(2.10), the Grishin axioms in rule form (2.16), and the monotonicity rules of (2.17).3 We give
these rules with combinator proof terms, so that in the remainder we can succinctly refer to
derivations by their combinator. First the residuation rules of (2.15).

3The axiomatization presented here is a close relative of Display Logic, see [12] for a comprehensive view on
the substructural landscape. In Display Logic, the Grishin rules and residuation principles are expressed at the
structural level; structural connectives are introduced by explicit rewriting steps. Our combinator presentation
is entirely formula-based, i.e. the distinction between a ‘logical’ and a ‘structural’ occurrence of a type-forming
operation is implicit.
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f : A⊗B → C

�f : B → A\C
f : C → A⊕B

�f : A ; C → B

f : A⊗B → C

�f : A→ C/B

f : C → A⊕B

�f : C �B → A

(2.15)

These rules are invertible; we write �′,�′,�′,�′ for the reverse direction. Next the Grishin
axioms in rule form, for use in the lhs of derivability statements.

f : A ; (B ⊗ C)→ D

L

f : (A ; B)⊗ C → D

f : (A⊗B)� C → D
L
f : A⊗ (B � C)→ D

f : B ; (A⊗ C)→ D

Lf : A⊗ (B ; C)→ D

f : (A⊗ C)�B → D

Lf : (A�B)⊗ C → D

(2.16)

Finally, (2.17) gives the monotonicity rules. As is well-known, the monotonicity rules are derivable
rules of inference in an axiomatization with residuation and transitivity (cut). The purpose of the
present axiomatization is to show that the combination monotonicity plus residuation effectively
absorbs cut. Admissibility of cut is established in Appendix 2.5, extending the earlier result of
[22] to the case of symmetric LG.

f : A→ B g : C → D

f ⊗ g : A⊗ C → B ⊗D

f : A→ B g : C → D

f ⊕ g : A⊕ C → B ⊕D

f : A→ B g : C → D

f/g : A/D → B/C

f : A→ B g : C → D

f � g : A�D → B � C

f : A→ B g : C → D

g\f : D\A→ C\B
f : A→ B g : C → D

g ; f : D ; A→ C ; B

(2.17)

The symmetries we have studied before on the level of types and theorems now manifest them-
selves on the level of proofs.

∞
h/g f ⊗ g f\h

g ; h g ⊕ f h� f
∞

�f �f �′f �′f

�f �f �′f �′f
(2.18)

As an example, consider (2.19). On the left, we derive G1′ = G1∞ from G1; on the right we
derive G1 from G1′. Notice that these derivations provide the motivation for our choice to posit
∞ as the basic order-reversing duality, rather than \ which we define as ./∞.

(c ⊕ b)/a → (c ⊕ b)/a

((c ⊕ b)/a)⊗ a → c ⊕ b
�′

c ; (((c ⊕ b)/a)⊗ a)→ b
�

(c ; ((c ⊕ b)/a))⊗ a → b

L

c ; ((c ⊕ b)/a)→ b/a
�

(c ⊕ b)/a → c ⊕ (b/a) �′

a ; (b⊗ c)→ a ; (b⊗ c)
b⊗ c→ a⊕ ((a ; (b⊗ c)) �′

b→ (a⊕ ((a ; (b⊗ c)))/c
�

b→ a⊕ ((a ; (b⊗ c))/c)

L∞

a ; b→ (a ; (b⊗ c))/c
�

(a ; b)⊗ c→ a ; (b⊗ c) �′

(�′ �

L

� �′ 1(c⊕b)/a)∞ = �′ �

L∞ � �′ 1a;(b⊗c)

(2.19)

We close this section with an open question on complexity. The minimal symmetric system LG∅
is proved to preserve the polynomiality of the asymmetric NL in [7]. Capelletti [4] provides
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a constructive polynomial algorithm for a combinator-style axiomatization of LG∅ that allows
agenda-driven chart-based parsing. Whether the methods developed in [4] can be extended to
include the Grishin interaction principles remains to be investigated.

2.2.2 The group of Grishin interactions

The ./ and ∞ dualities deserve closer scrutiny: as a matter of fact, they hide some interesting
grouptheoretic structure.4 First of all, from ./ and the identity transformation 1 we obtain two
further order-preserving symmetries ] and [: on the ⊗ family ] acts like ./, on the ⊕ family it is
the identity; [ acts like ./ on the ⊕ family, and as the identity on the ⊗ family.

] [
Frm(/,⊗, \) ./ 1
Frm(;,⊕,�) 1 ./

(2.20)

One easily checks that the Grishin postulates (2.12) are related horizontally by ./, vertically by
] and diagonally by [. Together with the identity transformation, ./, ] and [ constitute D2 —
the dihedral group of order 4 (also known as the Klein group). This is the smallest non-cyclic
abelian group. Its Cayley table is given in (2.21) below.

◦ 1 ./ ] [
1 1 ./ ] [
./ ./ 1 [ ]
] ] [ 1 ./
[ [ ] ./ 1

(2.21)

Similarly, from ∞ we obtain three further order-reversing symmetries: \ =./∞, and the mixed
forms † and ‡ in (2.22) below.

† ‡
Frm(/,⊗, \) \ ∞
Frm(;,⊕,�) ∞ \

(2.22)

Together with the order-preserving transformations {1, ./, ], [}, the set {∞, \, †, ‡} constitutes a
group of order 8. We can now consider a cube of Grishin interactions.

G1′ G3′

∞G2′
���

G4′
���

G1 G3

G2 ./

����
G4

]

����

(2.23)

The lower plane is the square (2.12) which we saw is characterized by D2. The transformation
∞ reflects (2.12) to the upper plane (2.14). The remaining transformations connect vertices of
the lower plane to those of the upper plane via the diagonals. It will not come as a surprise
that we have D4, which contains 2×D2 as subgroups: {1, ./, ], [} and {1,∞, \, ./}. Notice that

4This section reports on work in progress with Lutz Strassburger (Ecole Polytechnique, Paris) and with Anna
Chernilovskaya (Moscow State University).
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calculus interpretation
NL free quasigroup (Foret [11])
L free group (Pentus [25])

LP free Abelian group (Pentus [25])
LG free Abelian group (Moortgat and Pentus [23])

Table 2.1: Models for type equivalence

D4, unlike its D2 subgroups, is not abelian. Consider for example †∞ = [ 6= ] = ∞†. The
composition †∞ relates G1 to G4 via G1′; the composition∞† brings us from G1 to G2 via G2′.

2.2.3 Type similarity

The notion of type similarity is a powerful tool to study the expressivity of categorial logics with
respect to derivational relationships. The similarity relation ∼ is introduced in the algebraic
remarks at the end of [17] as the reflexive, transitive, symmetric closure of the derivability
relation: A ∼ B iff there exists a sequence C1 . . . Cn (1 ≤ n) such that C1 = A, Cn = B and
Ci → Ci+1 or Ci+1 → Ci (1 ≤ i<n). Lambek proves that A ∼ B if and only if one of the
following equivalent statements hold (the so-called diamond property): (i) ∃C such that A→ C
and B → C; (ii) ∃D such that D → A and D → B. In other words, given a join type C for A
and B, one can compute a meet type D, and vice versa. The solutions for D and C in [17] are
given in (2.24). It is shown in [11] that these solutions are in fact adequate for the pure logic of
residuation, i.e. the non-associative calculus NL.

NL : D = (A/((C/C)\C))⊗ ((C/C)\B), C = (A⊗ (D\D))/(B\(D ⊗ (D\D))) (2.24)

For associative L, [25] has the shorter solution in (2.25). The possibility of rebracketing the types
for D and C is what makes this solution work. In LG also a length 5 solution is available, this
time dependent on the Grishin interaction principles, see (2.26).

L : D = (A/C)⊗ (C ⊗ (C\B)), C = (D/A)\(D/(B\D)) (2.25)

LG : D = (A/C)⊗ (C � (B ; C)), C = (A�D)⊕ (D/(B\D)) (2.26)

The similarity relation for various calculi in the categorial hierarchy has been characterized in
terms of an algebraic interpretation of the types J·K, in the sense that A ∼ B iff JAK =S JBK
in the relevant algebraic structures S. Table 2.1 gives an overview of the results. For the pure
residuation logic NL, S is the free quasigroup generated by the atomic types, with J·K defined
in the obvious way: JpK = p, JA/BK = JAK/JBK, JB\AK = JBK\JAK, JA ⊗ BK = JAK · JBK.5 In
associative L, type similarity coincides with equality in the free group generated by the atomic
types (free Abelian group for associative/commutative LP). The group interpretation is (2.27).

JpK = p, JA⊗BK = JAK · JBK, JA/BK = JAK · JBK−1, JB\AK = JBK−1 · JAK (2.27)

We see in Table 2.1 that for the systems in the Lambek hierarchy, expressivity for ∼ is inversely
proportional to structural discrimination: the structural rules of associativity and commutativity
destroy sensitivity for constituent structure and word order. The result below shows that LG

5Recall that a quasigroups is a set equipped with operations /, ·, \ satisfying the equations (x/y) · y = x,
y · (y\x) = x, (x · y)/y = x, y\(y · x) = x.
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2. The Lambek-Grishin calculus

achieves the same level of expressivity with respect to ∼ as the associative/commutative calculus
LP and does so without inducing loss of structural discrimination.

Theorem 2.2.1 (Moortgat and Pentus [23]) In LG A ∼ B iff JAK = JBK in the free Abelian
group generated by Atm ∪ {?}.

The group interpretation proposed in [23] for LG is a variant of that in (2.27); for LG one adds
an extra element ? to keep track of the operator count, defined as in (2.28). It is well known
that Abelian group equality can be expressed in terms of a balancing count of (input/output)
occurrences of literals. The operator count, together with the count of literals, is sufficient to
characterize LG type similarity. It is in fact enough to keep track of only one of the operator
counts since the equalities |A|⊗ = |B|⊗ and |A|⊕ = |B|⊕ are equivalent provided that |A|p = |B|p
for all p. The equality

∑
p |A|p−|A|⊗−|A|⊕ = 1 has an easy proof by induction on the structure

of A.

|p|⊗ = |p|⊕ = 0

|A⊗B|⊗ = |A|⊗ + |B|⊗ + 1
|A⊕B|⊗ = |A|⊗ + |B|⊗
|A /B|⊗ = |A|⊗ − |B|⊗ − 1
|B \A|⊗ = |A|⊗ − |B|⊗ − 1
|A�B|⊗ = |A|⊗ − |B|⊗
|B ; A|⊗ = |A|⊗ − |B|⊗

|A⊗B|⊕ = |A|⊕ + |B|⊕
|A⊕B|⊕ = |A|⊕ + |B|⊕ + 1
|A /B|⊕ = |A|⊕ − |B|⊕
|B \A|⊕ = |A|⊕ − |B|⊕
|A�B|⊕ = |A|⊕ − |B|⊕ − 1
|B ; A|⊕ = |A|⊕ − |B|⊕ − 1

(2.28)

Some examples: operator balance fails for a/b vs a � b (these formulas have balancing literal
counts), and holds for pairs of formulas such as (b� c) ; a, c/(a\b) and a/b, (a� c)/(b� c) —
pairs which are indeed in the ∼ relation.
We will discuss a possible use of ∼ in linguistic analysis in §2.3. Below we reproduce a step in
the proof of Thm 2.2.1 which highlights the fact that LG has the kind of expressivity we expect
for LP.

Claim For arbitrary LG types A, B we have B\A ∼ A/B. To prove this claim, we provide a
meet type, i.e. a type X such that X → B\A and X → A/B, which by residuation means

B ⊗X → A and X ⊗B → A

Let us put X := Y � Z and solve for

B ⊗ (Y � Z)→ A and (Y � Z)⊗B → A

which by Grishin mixed associativity or commutativity follows from

B ⊗ Y → A⊕ Z and Y ⊗B → A⊕ Z

We have a solution with Z := (A ; B) and Y the meet for C the join of B\B and B/B, i.e.

C := ((b\((b ⊗ b)� b))⊕ (b/b))) and Y := ((b/b)/C)⊗ (C � ((b\b) ; C)) .
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2.2.4 Relational semantics

Let us turn now to the frame semantics for LG. We have seen in (2.2) that from the modal
logic perspective, the binary type-forming operation ⊗ is interpreted as an existential modality
with ternary accessibility relation R⊗. The residual / and \ operations are the corresponding
universal modalities for the rotations of R⊗. For the coproduct ⊕ and its residuals, the dual
situation obtains: ⊕ here is the universal modality interpreted w.r.t. an accessibility relation
R⊕; the coimplications are the existential modalities for the rotations of R⊕. Notice that, in
the minimal symmetric logic, R⊕ and R⊗ are distinct accessibility relations. Frame constraints
corresponding to the Grishin interaction postulates will determine how their interpretation is
related.

x  A⊕B iff ∀yz.R⊕xyz implies (y  A or z  B)
y  C �B iff ∃xz.R⊕xyz and z 6 B and x  C
z  A ; C iff ∃xy.R⊕xyz and y 6 A and x  C

(2.29)

Completeness for NL and its extension with ♦,� can be established on the basis of a canonical
model construction where the worlds are simply formulas from Frm(/,⊗, \,♦,�). For systems
with richer vocabulary, Kurtonina [14] unfolds a systematic approach towards completeness in
terms of filter -based canonical models. In the absence of the lattice operations6, for LG we can
do with the simplest filter-based construction, which construes the worlds as weak filters, i.e. sets
of formulas closed under derivability. Let us write F↑ for the set of filters over the LG formula
language Frm(/,⊗, \,;,⊕,�). The set of filters F↑ is closed under the operations · ⊗̂ ·, · ;̂ ·
defined in (2.30).

X ⊗̂ Y = {C | ∃A,B (A ∈ X and B ∈ Y and A⊗B → C)}
X ;̂ Y = {B | ∃A,C (A 6∈ X and C ∈ Y and A ; C → B}, alternatively

= {B | ∃A,C (A 6∈ X and C ∈ Y and C → A⊕B}
(2.30)

To lift the type-forming operations to the corresponding operations in F↑, let bAc be the principal
filter generated by A, i.e. bAc = {B | A → B} and dAe its principal ideal, i.e. dAe = {B | B →
A}. Writing X∼ for the complement of X, we have

(†) bA⊗Bc = bAc ⊗̂ bBc (‡) bA ; Cc = dAe∼ ;̂ bCc (2.31)

The equations of (2.31) can then be used to prove the usual truth lemma that for any formula
A ∈ F and filter X ∈ F↑, X  A iff A ∈ X. The proof is by induction on the complexity of A.
The base case is handled by the canonical valuation V c in the model below.

Canonical model Consider Mc = 〈W c, Rc
⊗, Rc

⊕, V c〉 with

W c = F↑

Rc
⊗XY Z iff Y ⊗̂ Z ⊆ X

Rc
⊕XY Z iff Y ;̂ X ⊆ Z

V c(p) = {X ∈W c | p ∈ X}

6Allwein and Dunn [1] develop a richer theory of Kripke models for a hierarchy of substructural logics,
accommodating both the lattice operations and (co)product and (co)implications.
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Theorem 2.2.2 Soundness and completeness (Kurtonina and Moortgat [16]).

LG∅ ` A→ B iff |= A→ B

For LG∅ extended with the Grishin interaction principles, one imposes the frame constraints
corresponding to the set of postulates one wishes to adopt (G↑, G↓ or both), and one shows
that in the canonical model these constraints are satisfied. For example, for (G1) we have the
constraint in (2.32) (where R(−2)xyz = Rzyx).

∀xyzwv (R⊗xyz ∧ R
(−2)
⊕ ywv)⇒ ∃t (R(−2)

⊕ xwt ∧ R⊗tvz) (2.32)

Observe that the construction employed is neutral with respect to the direction of the Grishin
interaction principles: it accommodates G1–G4 and the converse G1−1–G4−1 in an entirely
similar way. Further research would have to show whether more concrete models exist with a
bias towards either G1–G4 or the converse principles, and whether one could relate these models
to the distinction between ‘overt’ and ‘covert’ forms of displacement which we illustrate in §2.3.

2.2.5 Computational semantics

The second type of semantics we want to consider is the Curry-Howard interpretation of LG
derivations. In Bernardi and Moortgat [3], one finds a continuation semantics based on (a
directional refinement of) Curien and Herbelin’s [5] work on the λµ calculus. The source language
for this interpretation is a term language coding LG sequent proofs. The sequent presentation
of LG presented in [3] essentially relies on the Cut rule, which cannot be eliminated without
losing completeness. In the present section, we give a semantics in the continuation-passing style
(CPS) for the axiomatization of §2.2.1 which, as we have demonstrated, has an admissible cut
rule.
Functions, under the CPS interpretation, rather than simply returning a value as in a direct
interpretation, are provided with an extra argument for the continuation of the computation.
We distinguish a call-by-value (cbv) and a call-by-name (cbn) interpretation regime. On the type
level, the call-by-value transformation d·e is defined as in (2.33), where R is the distinguished type
of responses. For p atomic, dpe = p. Notice that the d·e translations for the (co)implications are
related vertically by left/right symmetry ·./ and in the horizontal dimension by arrow reversal ·∞.
Under cbv, for every type A of the source language, one has values dAe, continuations (functions
from values into R) and computations (functions from continuations into R).

dA\Be = RdAe×RdBe dB �Ae = dBe ×RdAe;

dB/Ae = RRdBe×dAe dA ; Be = RdAe × dBe.
(2.33)

The call-by-name interpretation b·c is obtained by duality: bAc , dA∞e. Under cbn, for every
type A of the source language, we have continuations bAc and computations (functions from
continuations into R).
Let us turn then to the interpretation of proofs, i.e. arrows f : A → B. Assuming countably
infinite sets of variables xi and covariables αi, we inductively associate each arrow f : A → B
with two closed terms, f. and f/, depending on whether we focus on A or B as the active
formula. The induction is set up in such a way that we obtain the mappings of (2.34).

df.e : dAe 7→ RRdBe
and df/e : RdBe 7→ RdAe (2.34)
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i.e. call-by-value df.e maps from A values to B computations; df/e from B continuations to A
continuations; call-by-name is dual, with (f.)∞ = (f∞)/, (f/)∞ = (f∞).: bf.c = df/e maps
B computations to A computations. The basis of the induction is given by the interpretation of
the identity arrow 1A : A→ A in (2.35).7 For the recursive cases, we define either the f. or the
f/ version. The missing case is obtained by swapping the lhs and rhs arguments.

d(1A).e x = λk.(k x) d(1A)/e α = λx.(α x) (2.35)

Monotonicity Given f : A→ B and g : C → D we have the monotonicity rules of (2.36). We
use curly brackets to distinguish the meta-application of the function definition from the actual
target language lambda term computed.

d(g\f).e y = λk.(k λ〈x, β〉.({dg.e x} λm.(y 〈m, {df/e β}〉)))

d(f/g).e x = λk.(k λ〈α, y〉.({dg.e y} λm.(x 〈{df/e α},m〉)))

d(f � g)/e α = λ〈x, δ〉.({df.e x} λy.(α 〈y, {dg/e δ}〉))

d(g ; f)/e β = λ〈δ, x〉.({df.e x} λy.(β 〈{dg/e δ}, y〉))

(2.36)

Residuation For the typing of the arrows f , see (2.15).

d(�f).e y = λk.(k λ〈x, γ〉.({df.e 〈x, y〉} γ))

d(�f).e x = λk.(k λ〈γ, y〉.({df.e 〈x, y〉} γ))

d(�′f).e 〈x, y〉 = λγ.({df.e y} λn.(n 〈x, γ〉))

d(�′f).e 〈x, y〉 = λγ.({df.e x} λm.(m 〈γ, y〉))

d(I f)/e α = λ〈z, β〉.({f/ 〈α, β〉} z)

d(J f)/e β = λ〈α, z〉.({f/ 〈α, β〉} z)

d(I′ f)/e 〈α, β〉 = λz.({df/e α} 〈z, β〉)

d(J′ f)/e 〈α, β〉 = λz.({df/e β} 〈α, z〉)
(2.37)

Grishin interaction rules The Grishin rules simply recombine the factors of the input struc-
ture. We work this out for G1 and its dual G1′, leaving the other cases for the reader.

f : A ; (B ⊗ C)→ D

L

f : (A ; B)⊗ C → D

f∞ : D → (C ⊕B)/A
(

L

f)∞ : D → C ⊕ (B/A)

d(

L

f).e 〈〈w, v〉, z〉 = λδ.((df.e 〈w, 〈v, z〉〉) δ)
b(

L

f).c = d((

L

f)∞)/e 〈γ, δ〉 = λz.(δ λ〈β, x〉.((d(f∞)/e λm.(m 〈〈γ, β〉, x〉)), z))
(2.38)

Example We contrast the cbv (left) and cbn (right) interpretations of a simple sentence ‘some-
body left’ involving a generalized quantifier expression of type (s� s) ; np. Literals are indexed
to facilitate identification of the axiom matchings.

7We follow usual functional programming practice writing the function definitions equationally, e.g. d(1A).e
is the function λxλk.(k x).
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np2 → np3

s4 → s0 s1 → s5

(s4 � s5)→ (s0 � s1)
�

s4 → ((s0 � s1)⊕ s5) �′

(np3\s4)→ (np2\((s0 � s1)⊕ s5))
\

(np2 ⊗ (np3\s4))→ ((s0 � s1)⊕ s5) �′

((s0 � s1) ; (np2 ⊗ (np3\s4)))→ s5
�

(((s0 � s1) ; np2)⊗ (np3\s4))→ s5

L

s5 → s1 s0 → s4

(s1\s0)→ (s5\s4)
\

(s5 ⊗ (s1\s0))→ s4
�′

np3 → np2

((s5 ⊗ (s1\s0))� np2)→ (s4 � np3)
�

(s5 ⊗ (s1\s0))→ ((s4 � np3)⊕ np2) �′

s5 → (((s4 � np3)⊕ np2)/(s1\s0))
�

s5 → ((s4 � np3)⊕ (np2/(s1\s0)))

L∞

(cbv) λc.((VleftW 〈π2VsomebodyW, λz.(π1VsomebodyW 〈z, c〉)〉)

(cbn) λc.((TsomebodyU λ〈q, y〉.(y 〈c, λc′.(TleftU 〈c′, q〉)〉))

2.3 Linguistic applications

In-depth discussion of the linguistic applications of LG is beyond the scope of this paper. We suf-
fice with some very simple illustrations. Recall the two problems with Lambek calculus discussed
in §2.1: non-local semantic construal and displacement. These problems find a natural solution
in the symmetric Lambek-Grishin systems. As shown in (2.39), in both cases the solution starts
from a lexical type assignment from which the usual Lambek type is derivable.

someone (s� s) ; np → s/(np\s)
which (n\n)/((s� s)⊕ (s/np)) → (n\n)/(s/np) (2.39)

Non-local scope construal An example would be a sentence of the type ‘Alice suspects
someone is cheating’. The sentence has two natural interpretations: there could be a particular
player whom Alice suspects of cheating (for example, because she sees a card sticking out of
his sleeve), or she could have the feeling that cheating is going on, without having a particular
player in mind (for example, because she finds two aces of spades in her hand). A Lambek type
assignment s/(np\s) for ‘someone’ is restricted to local construal in the embedded clause, i.e. the
second interpretation. The assignment (s� s) ;np also allows construal at the main clause level
as required for the first interpretation. In (2.40) one finds a summary derivation8 for the reading
where ‘someone’ has wide scope. By means of the Grishin interactions, the (s � s) subformula
moves to the top level leaving behind a np resource in situ; (s� s) then shifts to the succedent
by means of the dual residuation principle, and establishes scope via the dual application law.
Under the CPS interpretation discussed above, the derivation is associated with the term in
(2.41). The reader is invited to consult [3] for a CPS interpretation of the lexical constants
which associates this term with the reading (∃ λx.((suspects (cheating x)) alice)) as required.

np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s)))→ s s→ (s � s)⊕ s

np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s)))→ ((s � s)⊕ s)
trans

((s � s) ; (np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s)))))→ s
drp

np ⊗ (((np\s)/s)⊗ (((s � s) ; np)︸ ︷︷ ︸
someone

⊗(np\s)))→ s
G2 (2.40)

λc.(TsomeoneU λ〈q, y〉.(y 〈c, λc′.(TsuspectU 〈λc′′.(TcheatingU 〈c′′, q〉), 〈c′,TaliceU〉〉)〉)) (2.41)

8Full proof for the endsequent under ·∞ is �′ �′ L∞ �

L∞ �

L∞ � �′(�′ �′ (�′(1s � 1np) ; (1s � 1np))/1s).
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Displacement The second example deals with wh dependencies as in ‘(movie which) John
(np) saw ((np\s)/np = tv) on TV ((np\s)\(np\s) = adv)’. The shorthand derivation in (2.42)
combines the Grishin principles of (2.12) and their converses. The (s/np) subformula is added to
the antecedent via the dual residuation principle, and lowered to the target tv via applications
of (Gn−1). The tv context is then shifted to the succedent by means of the (dual) residuation
principles, and the relative clause body with its np hypothesis in place is reconfigured by means
of (Gn) and residuation shifting.

np⊗ ((tv ⊗ np)⊗ adv)→ s s→ (s� s)⊕ s

np⊗ ((tv ⊗ np)⊗ adv)→ (s� s)⊕ s
trans

tv → ((np\(s� s))/adv)⊕ (s/np)
Gn, rp

np⊗ ((tv � (s/np))⊗ adv)→ s� s
rp,drp

(np⊗ (tv ⊗ adv))� (s/np)→ s� s
Gn−1

np⊗ (tv ⊗ adv)→ (s� s)⊕ (s/np)
drp

(2.42)

The derivation can be summarized in the derived rule of inference (†), which achieves the same
effect as the extraction rule under modal control (‡). An attractive property of LG is that the
expressivity resides entirely in the Grishin interaction principles: the composition operation ⊗
in itself (or the dual ⊕) allows no structural rules at all, which means that the LG notion of
wellformedness is fully sensitive to linear order and constituent structure of the grammatical
material.

Γ[∆ ◦B]⇒ C

Γ[∆]⇒ (C � C)⊕ (C/B)
†

Γ[∆ ◦B]⇒ C

Γ[∆]⇒ C/♦�B
‡

(2.43)

Similarity Rotations of the type ((A\C)/B ∼ A\(C/B), (C/B)/A ∼ (C/A)/B make it possi-
ble to promote any embedded argument to a left or right peripheral position where it is visible
for slash introduction. Since the original and the rotated types are in the ∼ relation, one can
lexically assign their meet type according to the algorithm given in the previous section. Below
we look at extraction and head adjunction from this perspective. We show how the stategy of
assigning a meet type can be used to overcome the limitations of the Lambek calculus (both NL
and L), and how overgeneration can be avoided by appropriate modal decoration.
Phenomena of head adjunction likewise give rise to dependencies for which the rotation invariant
proves useful. In (2.44) below one finds a schematic representation of a crossed dependency in
Dutch, as in the phrase ‘(dat Jan) boeken (c) wil (a/b) lezen (c\b)’ with the order object–modal
auxiliary–transitive infinitive. One would like to derive type a (tensed verb phrase) for this
structure. As with extraction, there is a double challenge: one wants to allow the transitive
infinitive to communicate with its direct object across the intervening modal auxiliary; at the
same time, one has to rule out the ungrammatical order (a/b) ⊗ (c ⊗ (c\b)) which with the
indicated types would make a derivable.

⊗

CC
CC

CC
CC

}}
}}

}}
}}

c ⊗

AA
AA

AA
A

}}
}}

}}
}}

a/b c\b

(2.44)
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To bring our strategy into play, note that

c\b
(lifting)
∼ c\((a/b)\a)

(rotation)
∼ (a/b)\(c\a)

For the original c\b and the rotated (a/b)\(c\a) we have join C and meet D:

C = ((a/b)\a)⊕ (c\(a ; a))

D = ((c\b)/C)⊗ (C � (((a/b)\(c\a)) ; C))

To make the ungrammatical order modal auxiliary–object–transitive infinitive underivable, we
can impose subtyping constraints using modal decoration. It is enough to change the type of the
modal auxiliary to a/♦�b, and modify D accordingly, marking the rotated argument:

D′ = ((c\b)/C)⊗ (C � (((a/♦�b)\(c\a)) ; C))

Recall that ♦�A→ A. The join type C in other words can remain as it was since

(a/♦�b)\(c\a)→ ((a/b)\a)⊕ (c\(a ; a))

2.4 Conclusions

Natural languages exhibit mismatches between the articulation of compound expressions at the
syntactic and at the semantic level; such mismatches seem to obstruct a direct compositional
interpretation. In the face of this problem, two kinds of reaction have been prominent. The first
kind is exemplified by Curry’s [6] position in his contribution to the 1960 New York conference
where also [18] was presented: Curry criticizes Lambek for incorporating syntactic considera-
tions in his category concept, and retreats to a semantically biased view of categories. The
complementary reaction is found in Chomskyan generative grammar, where precedence is given
to syntax, and where the relevance of modeltheoretic semantics is questioned.
The work reviewed in this paper maintains the strong view that the type-forming operations are
constants both in the syntactic and in the semantic dimension. Semantic uniformity is reconciled
with structural diversity by means of structure-preserving interactions between the composition
operation ⊗ and its residuals and a dual family ⊕; the symmetries among these families restore
the strong Curry-Howard view on derivational semantics.

2.5 Appendix: Admissibility of cut

A cut-elimination algorithm for the Frm(/,⊗, \) fragment (i.e. NL) is presented in [22]. Induc-
tion is on the degree of a cut inference, measured as the number of type-forming operations in
the factors involved (|A| + |B| + |C|, where B is the cut formula, A the left premise lhs, C the
right premise rhs). Targets for elimination are ‘uppermost’ cut inferences: instances of cut which
are themselves derived without the aid of the cut rule. One shows that such an instance of cut
can be replaced by one or more cuts of lower degree; the basis of the induction being the case
where one of the cut premises is an instance of the axiom schema. The elimination process is
iterated until the derivation is cut-free.
For the transformations one distinguishes principal cuts from permutation cases. Principal cuts,
in the combinator presentation of §2.2.1, are cases where the cut formula in the two premises is
introduced by the monotonicity rules. Such cuts are replaced by cuts on the four subformulas
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h : D → A⊕B

f : A→ A′ g : B → B′

A⊕B → A′ ⊕B′
....

A⊕B → C
D → C ;

h : D → A⊕B
D �B → A

�
f : A→ A′

D �B → A′

D → A′ ⊕B
�′

A′ ; D → B
�

g : B → B′

A′ ; D → B′

D → A′ ⊕B′ �′

....
D → C

Figure 2.3: k[f ⊕ g] ◦ h = k[�′(g ◦� �′ (f ◦�h))]

f : C ′ → C g : B → B′

C ′ �B′ → C �B
....

D → C �B h : C �B → A
D → A ;

f : C ′ → C
h : C �B → A

C → A⊕B
�′

C ′ → A⊕B

A ; C ′ → B
�

g : B → B′

A ; C ′ → B′

C ′ → A⊕B′ �′

C ′ �B′ → A
�

....
D → A

Figure 2.4: h ◦ k[f � g] = k[� �′ (g ◦�(�′h ◦ f))]

involved, with a reduction of the complexity degree. For the non-principal cases, one shows that
the application of cut can be pushed upwards, again reducing complexity. The extension of the
procedure of [22] to Frm(�,⊕,;) is immediate via arrow reversal. In Fig 2.3 and Fig 2.4 we give
the ⊕ and � cases with the corresponding equations on the proof terms; the ; case is symmetric.
This covers the minimal symmetric system LG∅. For full LG (the extension of LG∅ with the
G↑ interaction principles of (2.12)), what remains to be shown is that applications of cut never
have to be immediately preceded by applications of the Grishin interaction rules. In Fig 2.5 is
an instance of cut immediately preceded by

L

. We have unfolded the left cut premise so as to
unveal the applications of the ; and ⊗ monotonicity rules within their contexts. This derivation
can be rewritten as in Fig 2.6 where the cut on (A ; B) ⊗ C is replaced by cuts on the factors
A, B and C, followed by the Grishin inference

L

.
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3

Continuation semantics
for symmetric categorial grammar

Raffaella Bernardi and Michael Moortgat

Abstract Categorial grammars in the tradition of Lambek [12, 13] are asymmetric: sequent
statements are of the form Γ ⇒ A, where the succedent is a single formula A, the antecedent a
structured configuration of formulas A1, . . . , An. The absence of structural context in the succe-
dent makes the analysis of a number of phenomena in natural language semantics problematic. A
case in point is scope construal: the different possibilities to build an interpretation for sentences
containing generalized quantifiers and related expressions. In this paper, we explore a symmetric
version of categorial grammar based on work by Grishin [10]. In addition to the Lambek prod-
uct, left and right division, we consider a dual family of type-forming operations: coproduct,
left and right difference. Communication between the two families is established by means of
structure-preserving distributivity principles. We call the resulting system LG. We present a
Curry-Howard interpretation for LG(/, \,;,�) derivations. Our starting point is Curien and
Herbelin’s sequent system for λµ calculus [5] which capitalizes on the duality between logical
implication (i.e. the Lambek divisions under the formulas-as-types perspective) and the differ-
ence operation. Importing this system into categorial grammar requires two adaptations: we
restrict to the subsystem where linearity conditions are in effect, and we refine the interpretation
to take the left-right symmetry and absence of associativity/commutativity into account. We
discuss the continuation-passing-style (CPS) translation, comparing the call-by-value and call-
by-name evaluation regimes. We show that in the latter (but not in the former) the types of
LG are associated with appropriate denotational domains to enable a proper treatment of scope
construal.

Thanks We thank Chris Barker and Ken Shan for sharing their view on continuation semantics
with us at an earlier presentation of Lambek-Grishin calculus at the workshop Proof Theory
at the Syntax-Semantics Interface (LSA Institute, Harvard/MIT, July 2005). Special thanks
to Peter Selinger, for helpful discussion on the duality between call-by-value and call-by-name
during GEOCAL’06 (Marseille-Luminy, February 2006) and to Philippe de Groote for bringing
Curien and Herbelin’s work to our attention. All errors remain our own.
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3. Continuation semantics for symmetric categorial grammar

3.1 Background

Lambek-style categorial grammars offer an attractive computational perspective on the principle
of compositionality: under the Curry-Howard interpretation, derivations are associated with
instructions for meaning assembly. In natural language semantics, scope construal of generalized
quantifier expressions presents an ideal testing ground to bring out the merits of this approach.
Scope construal exemplifies a class of phenomena known as in situ binding. An in situ binder
syntactically occupies the position of a phrase of type A; semantically, it binds an A-type variable
in that position within a context of type B, producing a value of type C as a result. The inference
pattern of (3.1) (from [15]) schematically captures this behaviour in the format of a sequent rule.
The challenge is to solve the equation for the type alias q(A,B,C) in terms of the primitive
type-forming operations.

∆[x : A]⇒ N : B Γ[y : C]⇒M : D

Γ[∆[z : q(A,B,C)]]⇒M [y := (z λx.N)] : D . (3.1)

It is a poignant irony that precisely in the area of scope construal, the performance of the original
Lambek calculus (whether in its associative or non-associative incarnation) is disappointing. For
a sentence-level generalized quantifier (GQ) phrase, we have A = np, B = C = s in (3.1).
The type-forming operations available to define q(np, s, s) are the left and right slashes. A first
problem is the lack of type uniformity. Given standard modeltheoretic assumptions about the
interpretation of the type language, an assignment s/(np\s) to a GQ phrase is associated with
an appropriate domain of interpretation (a set of sets of individuals), but with such a type a
GQ is syntactically restricted to subject positions: for phrase-internal GQ occurrences, context-
dependent extra lexical type assignments have to be postulated. Second, this lexical ambiguity
strategy breaks down as soon as one considers non-local scope construal, where the distance
between the GQ occurrence and the sentential domain where it establishes its scope can be
unbounded.
The solutions that have been proposed in the type-logical literature we consider suboptimal. The
type-shifting approach of Hendriks [11] and the multimodal accounts based on wrapping opera-
tions of Morrill and co-workers [17, 18] each break the isomorphic relation between derivations
and terms that is at the heart of the Curry-Howard interpretation. Hendriks introduces a one-to-
many dichotomy between syntactic and semantic derivations. Morrill makes the opposite choice:
a multiplicity of syntactically distinct implicational operations which collapse at the semantic
level.
The approach we develop in the sections below sticks to the minimal categorial logic: the pure
logic of residuation. We overcome the expressive limitations of the Lambek calculi by lifting
the single succedent formula restriction and move to a symmetric system where the Lambek
connectives (product, left and right division) coexist with a dual family (coproduct, right and left
difference). The communication between these two families is expressed in terms of Grishin’s [10]
distributivity principles. Figure 3.1 schematically presents the outline of the paper. In §3.2 we
present LG in algebraic format and discuss the symmetries that govern the vocabulary of type-
forming operations. In §3.3 we present a ‘classical’ term language for the LG type system, and
we discuss how a term τ of type A is obtained as the Curry-Howard image of an LG sequent
derivation π. In §3.4 we then study the CPS interpretation of types and terms, comparing the
dual call-by-value d·e and call-by-name b·c regimes. Under the CPS interpretation, the classical
terms for LG derivations are transformed into terms of the simply typed lambda calculus — the
terms that code proofs in positive intuitionistic logic. The λ→ terms thus obtained adequately
reflect NL meaning composition, and (unlike the terms for Multiplicative Linear Logic or its
categorial equivalent LP) they are obtained in a structure-preserving way. In §3.5 we illustrate
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The Lambek-Grishin Calculus

π ≈ τA
cbv //

cbn

��

dτe : dAe

V·W

��·∞

::uuuuuuuuu

zzuuuuuuuuu
β

��
bτc : bAc

T·U
//

β
// λ→

Figure 3.1: Outline of the paper

the approach with a discussion of scope construal. We investigate under what conditions the
lexical constants of the original Lambek semantics can be lifted to the call-by-value V·W and/or
call-by-name T·U level, and study how the λ→ terms one obtains after this transformation and
β normalisation encode the different possibilities for scope construal. In the concluding section
§3.6, we point to some directions for future work.

Relation to previous work Lambek [14] was the first paper to bring Grishin’s work under
the attention of a wider public. Lambek’s bilinear systems are both stronger and weaker than
what we propose here: they have hard-wired associativity for ⊗,⊕, which means that control
over constituent structure is lost; in addition, only half of the Grishin laws are taken into ac-
count (G1, G3 in Figure 3.2), an omission that precludes the account of non-peripheral scope
construal presented here. De Groote [6] introduced λµ calculus and continuations into the lin-
guistic discussion of scope construal; Barker and Shan, in a series of papers ([2, 3, 20] among
others), have been advocating this approach for a variety of semantic phenomena. We discuss
the relation of our proposal to theirs in §3.6. Duality between the call-by-value and call-by-name
evaluation strategies has been obtained in [19, 5, 21], among others. Our starting point is the
Curien/Herbelin system because, in contrast to the other cited works, it has implication and
difference as primitive operations.

3.2 The Lambek-Grishin Calculus

The calculus that we will use in this paper is presented in Figure 3.2. We refer to this system as
LG. In (3.2), one finds the extended vocabulary of LG: the familiar Lambek operators ⊗, \, /
are complemented with a family ⊕,�,;. In verbal communication, we pronounce B\A as ‘B
under A’, A/B as ‘A over B’, B ; A as ‘B from A’ and A�B as ‘A less B’. As usual under the
formulas-as-types perspective, we can view the expressions of (3.2) as types with ⊗, \, /,⊕,�,;
as type-forming operations, or as logical formulas, with ⊗, \, /,⊕,�,; as connectives.

A,B ::= p | atoms: s sentence, np noun phrase, . . .

A⊗B | B\A | A/B | product, left vs right division (types)
tensor, left vs right implication (formulas)

A⊕B | A�B | B ; A coproduct, right vs left difference (types)
cotensor, left vs right coimplication (formulas)

(3.2)
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3. Continuation semantics for symmetric categorial grammar

(pre-order) A ≤ A

A ≤ B B ≤ C

A ≤ C

(residuation) A ≤ C/B iff A⊗B ≤ C iff B ≤ A\C

(dual residuation) B ; C ≤ A iff C ≤ B ⊕A iff C �A ≤ B

(interaction)

(G1) (A ; B)⊗ C ≤ A ; (B ⊗ C) C ⊗ (B �A) ≤ (C ⊗B)�A (G3)

(G2) C ⊗ (A ; B) ≤ A ; (C ⊗B) (B �A)⊗ C ≤ (B ⊗ C)�A (G4)

Figure 3.2: LG: symmetric Lambek calculus with Grishin interaction principles

The LG type system exhibits rich symmetries, discussed in full in [16]. In the present paper,
two kinds of mirror symmetry will play an important role. The first ·./ is internal to the ⊗ and
⊕ families and preserves the ≤ order; the second ·∞ relates the ⊗ and ⊕ families and is reverses
the ≤ order. We have p./ = p = p∞ and the (bidirectional) translation tables of (3.3).

./
C/D A⊗B B ⊕A D ; C

D\C B ⊗A A⊕B C �D
∞

C/B A⊗B A\C
B ; C B ⊕A C �A

(3.3)

Algebraically, the Lambek operators /,⊗, \ form a residuated triple; likewise, the ;,⊕,� family
forms a dual residuated triple. The minimal symmetric categorial grammar consists of just
the preorder axioms (reflexivity and transitivity of ≤) together with these (dual) residuation
principles.1

Grishin’s interaction principles The minimal symmetric system is of limited use if one
wants to address the linguistic problems discussed in the introduction. In a system with just
the (dual) residuation principles, for every theorem of the (non-associative) Lambek calculus,
one also has its image under ·∞: A ≤ B iff B∞ ≤ A∞. Interaction between the ⊗ and the ⊕
family, however, is limited to gluing together theorems of the two families via cut. This limited
interaction means that a formula from the ⊕ family which is trapped in a ⊗ context (or vice
versa) will be inaccessible for logical manipulation.
The interaction principles proposed in [10] address this situation. Consider first G1 and G2 in
Fig 3.2. On the lefthand side of the inequality, a coimplication A ; B is hidden as the first or
second coordinate of a product. The postulates invert the dominance relation between ⊗ and ;,
raising the subformula A to a position where it can be shifted to the righthand side by means of
the dual residuation principle. G3 and G4 are the images of G1 and G2 under ·./. Similarly, a
left or right implication trapped within a ⊕ context can be liberated by means of the ·∞ images
in (3.4). Combined with transitivity, the Grishin postulates take the form of inference rules (G1:
from A ; (B ⊗ C) ≤ D conclude (A ; B)⊗ C ≤ D, etc.)

(G3)∞ A\(B ⊕ C) ≤ (A\B)⊕ C
(G4)∞ A\(C ⊕B) ≤ C ⊕ (A\B)

(C ⊕B)/A ≤ C ⊕ (B/A) (G1)∞;
(B ⊕ C)/A ≤ (B/A)⊕ C (G2)∞.

(3.4)

1For a comprehensive overview (from a Display Logic perspective) of the substructural space of which LG is
an inhabitant, the reader can consult [9]. De Groote and Lamarche [7] present sequent calculus and proof nets
for a negation-tensor-par formulation of Classical Non-associative Lambek Calculus (CNL). LG is the subsystem
of CNL given by the polarities of the operators in (3.2). CNL does not contain Grishin interaction principles.
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Proofs and Terms

The Grishin laws manifest themselves in many forms. The key observation for their usefulness
in the analysis of scope construal lies in the fact that (B � C) ; A ≤ C/(A\B) is a theorem of
LG. This means that a Lambek type s/(np\s) is derivable from a (s � s) ; np type; what can
be done with the former can also be done with the latter, but the coimplication type also has
non-local capabilities thanks to the Grishin interactions.
Apart from the interaction principles G1–G4 (and their duals) which will be at the heart of our
analysis of scope construal, Grishin considers other options for generalizing Lambek calculus.
The reader is referred to [16] for a discussion of these options and their potential linguistic uses.
Also in [16] one finds a decision procedure for LG based on the monotonicity laws for the type-
forming operations, together with the residuation principles and the Grishin principles in rule
form.

3.3 Proofs and Terms

The term language we will use for LG derivations is a directional version of Curien/Herbelin’s
classical λµµ̃ terms which takes the ·./ symmetry into account. The term language distinguishes
terms, coterms (contexts) and commands. We give the syntax of the term language in (3.5).
For terms, we use x,M,N ; for coterms (contexts) α, K,L; commands are cuts M ∗ L between
a term M and a coterm L. We overload the notation, writing x \M versus M /x for the left
and right abstraction constructs; similarly for coabstraction. As discussed in §3.1, the familiar
lambda abstraction of λ→ will be reinstalled as a result of the CPS transformation on the terms
of (3.5).

x ∈ TermA if x ∈ VarA

(l abstraction) x\M ∈ TermB\A if x ∈ VarB ,M ∈ TermA

(r abstraction) M/x ∈ TermA/B if x ∈ VarB ,M ∈ TermA

(l coapplication) K � M ∈ TermB;A if K ∈ CoTermB ,M ∈ TermA

(r coapplication) M � K ∈ TermA�B if K ∈ CoTermB ,M ∈ TermA

(r shift) µα.(x ∗K) ∈ TermB if α ∈ CoVarB , x ∈ VarA,K ∈ CoTermA

α ∈ CoTermA if α ∈ CoVarA

(l application) M n K ∈ CoTermB\A if K ∈ CoTermA,M ∈ TermB

(r application) K o M ∈ CoTermA/B if K ∈ CoTermA,M ∈ TermB

(l coabstr) α ; K ∈ CoTermB;A if α ∈ CoVarB ,K ∈ CoTermA

(r coabstr) K � α ∈ CoTermA�B if α ∈ CoVarB ,K ∈ CoTermA

(l shift) µ̃x.(M ∗ α) ∈ CoTermA if x ∈ VarA,M ∈ TermB , α ∈ CoVarB

(3.5)
As in the case of the Lambek calculus, for LG we are interested in the resource-sensitive sublan-
guage. This means that the (co)abstraction and (co)application cases are subject to a linearity
condition: the (co)variable bound in a (co)abstraction occurs free exactly once in the body; in
the (co)application case the sets of free (co)variables of the term and coterm involved are disjoint.
Our use of cut is restricted to patterns x ∗K (M ∗ α) in the shift right (left) construct, where µ
(µ̃) obeys the single-bind restriction.
The dualities we discussed for the type system extend to the term language: (3.6) and (3.7).
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3. Continuation semantics for symmetric categorial grammar

The latter acts on the directional constructs; identity otherwise.

x∞ = α
(x \M)∞ = M∞ � α
(M /x)∞ = α ; M∞

(M � K)∞ = K∞ n M∞

(K � M)∞ = M∞ o K∞

(µβ.(x ∗K))∞ = µ̃y.(K∞ ∗ α)

α∞ = x;
(K � α)∞ = x \K∞;
(α ; K)∞ = K∞ / x;
(M n K)∞ = K∞ � M∞;
(K o M)∞ = M∞ � K∞;

(µ̃y.(M ∗ α))∞ = µβ.(x ∗M∞).

(3.6)

(M � K)./ = K./ � M./ (M n K)./ = K./ o M./;
(x \M)./ = M./ / x (K � α)./ = α ; K./.

(3.7)

3.3.1 LG Sequent Calculus

In Lambek calculus, sequents are statements Γ ⇒ B, where Γ is a binary tree with formulas
A1,. . . ,An at the yield, and B is a single formula. The structure-building operation which puts
together the antecedent tree is the counterpart of the ⊗ logical operation. In LG, sequents Γ⇒ ∆
can have structures both in the antecedent and in the succedent. The sequent interpunction
(which we write · ◦ ·) is the structural counterpart of ⊗ in the antecedent, and of ⊕ in the
succedent. Notice that in the absence of associativity, ◦ is a binary operation.
In the rules below, we decorate LG derivations with the terms of (3.5). We distinguish sequents

Γ M−−→ ∆[B] and cosequents Γ[A] K−−→ ∆ with proof term M and coterm K respectively. A
sequent (cosequent) has precisely one active succedent (antecedent) formula. The active formula
is unlabeled. The passive antecedent (succedent) formulas are labeled with distinct variables xi

(covariables αi).
For the axiomatic case, we distinguish two versions, depending on whether the succedent or the
antecedent is the active formula. The rules (�) and (
) make it possible to shift the focus from
antecedent to succedent or vice versa. These rules are in fact restricted cuts, where one of the
premises is axiomatic (Axiom or Co-Axiom).

x : A
x−−→ A

Ax
A

α−−→ α : A
Co-Ax

. (3.8)

Γ[A] K−−→ ∆[α : B]

Γ[x : A]
µα.(x ∗K)−−−−−−−→ ∆[B]

(�)
Γ[x : A] M−−→ ∆[B]

Γ[A]
eµx.(M ∗ α)−−−−−−−−→ ∆[α : B]

(
)
.

(3.9)

Let us now consider the sequent left and right rules for the connectives. We restrict attention
to the (co)implication fragment, i.e. we only cater for ⊗ and ⊕ in their ‘structural’ form ◦ as
antecedent resp. succedent punctuation. The rules of use for the (co)implications are given in
(3.10): these are two-premise rules, introducing an implication (coimplication) in the antecedent
(succedent). Notice that we find the ·./ and ·∞ symmetries here at the level of the inference
rules, with ·∞ (·./) relating pairs of rules in the horizontal (vertical) dimension.
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B
K−−→ ∆ ∆′ M−−→ Γ[A]

∆′ M � K−−−−−→ Γ[(A�B) ◦∆]
(�R)

∆ M−−→ B Γ[A] K−−→ ∆′

Γ[∆ ◦ (B\A)] M n K−−−−−→ ∆′
(\L)

(�R) ← ·∞ → (\L)
↑ ↑
·./ ·./
↓ ↓

(;R) ← ·∞ → (/L)

B
K−−→ ∆ ∆′ M−−→ Γ[A]

∆′ K � M−−−−−→ Γ[∆ ◦ (B ; A)]
(;R)

∆ M−−→ B Γ[A] K−−→ ∆′

Γ[(A/B) ◦∆] K o M−−−−−→ ∆′
(/L)

(3.10)

The rules of proof for the (co)implications are given in (3.11): these are one-premise rules,
introducing an implication (coimplication) in the succedent (antecedent).

x : B ◦ Γ M−−→ ∆[A]

Γ
x \M−−−−→ ∆[B\A]

(\R) Γ[A] K−−→ ∆ ◦ α : B

Γ[A�B] K � α−−−−→ ∆
(�L)

(\R) ← ·∞ → (�L)
↑ ↑
·./ ·./
↓ ↓

(/R) ← ·∞ → (;L)

Γ ◦ x : B
M−−→ ∆[A]

Γ
M / x−−−−→ ∆[A/B]

(/R) Γ[A] K−−→ α : B ◦∆

Γ[B ; A] α ; K−−−−→ ∆
(;L)

(3.11)

Observe that to prove the soundness of the coimplication (implication) rules of proof from the
algebraic presentation, one uses the Grishin interaction principles to move the B subformula
upwards through the ⊗ context (⊕ context), and then shifts it to the succedent (antecedent) part
via the residuation principles. The Grishin interaction principles, in other words, are absorbed
in these rules of proof. We illustrate this in (3.12) for (\R), writing Γ• (∆◦) for the formula
equivalent of an antecedent (succedent) structure. The vertical dots abbreviate a succession of
Grishin interaction steps.

B ⊗ Γ• ≤ ∆◦[A]
Γ• ≤ B\∆◦[A]....
Γ• ≤ ∆◦[B\A] (3.12)

As indicated in §3.2, we will use the formula (B � C) ; A to do the work of the in situ binder
schema q(A,B, C). (Alternatively, we could have used its ·./ dual A� (C ; B).) The (qL) and
(qR) rules of Fig 3.3 have the status of derived inference rules. We will use them in §3.5 to
present proofs and terms in a more compact format. In §3.7 we give a worked-out derivation of
(B�C);A⇒ C/(A\B), together with further abbreviatory conventions. The reader may want
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3. Continuation semantics for symmetric categorial grammar

C
L−−→ ∆ Γ[x : A] N−−→ B

Γ[(B � C) ; A]
bind(x, N, L)−−−−−−−−−→ ∆

(qL)
,

C
L−−→ ∆ Γ[x : A] N−−→ B

Γ[x : A] N � L−−−−→ (B � C) ◦∆
(�R)

Γ[A]
eµx.((N � L) ∗ γ)−−−−−−−−−−−→ γ : (B � C) ◦∆




Γ[(B � C) ; A]
γ ; (eµx.((N � L) ∗ γ))−−−−−−−−−−−−−−−→ ∆

(;L)

B
K−−→ ∆′ ◦ β : C Γ M−−→ ∆[A]

Γ
cobind(M, K, β)−−−−−−−−−−−→ ∆[∆′ ◦ ((B � C) ; A)]

(qR)
,

B
K−−→ ∆′ ◦ β : C

B � C
K � β−−−−→ ∆′

(�L)
Γ M−−→ ∆[A]

Γ
(K � β) � M−−−−−−−−−→ ∆[∆′ ◦ ((B � C) ; A)]

(;R)

Figure 3.3: Derived inference rules for (B � C) ; A ≈ q(A,B,C).

to check that a cut of (qR) against (qL) can be rewritten with cuts on the subformulae A, B,
C, as required: cobind(MA,KB , βC) ∗ bind(xA, NB , LC) −→β M ∗ µ̃x.(µβ.(N ∗K) ∗ L). One
should keep in mind that (qL) and (qR) are short-cuts, i.e. ways of abbreviating a sequence of n
inference steps as a one-step inference. For some theorems of LG, one cannot take a short-cut:
their derivation requires the individual inference rules for the connectives involved. The valid
type transition (B � C) ; A⇒ ((D\B)� (D\C)) ; A is an example.

3.4 Interpretation: Continuation Semantics

We turn now to an interpretation for LG derivations in the continuation-passing-style (CPS).
In the semantics of programming languages, CPS interpretation has been a fruitful strategy
to make explicit (and open to manipulation) aspects of computation that remain implicit in a
direct interpretation. In the direct interpretation, a function simply returns a value. Under the
CPS interpretation, functions are provided with an extra argument for the continuation of the
computation. This explicit continuation argument is then passed on when functions combine
with each other. Key concepts, then, are “computation”, “continuation” and “value” and the
way they relate to each other for different evaluation strategies.
Curien and Herbelin [5] develop the CPS interpretation for a classical system with an implica-
tion and a difference operation; call-by-value (cbv) d·e and call-by-name (cbn) b·c regimes are
related by the duality between the implication and difference operations. For LG we refine the
Curien/Herbelin continuation semantics to accommodate the left/right symmetry. We first con-
sider the effect of the CPS interpretation on the level of types, comparing a call-by-value (cbv)
and a call-by-name (cbn) regime; then we define the CPS interpretation on the level of the terms
of (3.5).

Types: call-by-value The target type language has a distinguished type R of responses,
products and functions; all functions have range R. For each type A of the source language,
the target language has values VA = dAe, continuations KA = RVA (functions from VA to R)
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and computations CA = RKA (functions from KA to R).2 Notice that given the canonical
isomorphism A × B → C ∼= A → (B → C), one can also think of a VA\B as a function
from A values to B computations. For p atomic, dpe = p. In (3.13), the d·e translations for
the (co)implications are related in the vertical dimension by left/right symmetry ·./ and in the
horizontal dimension by arrow reversal ·∞: right difference is dual to left division, left difference
dual to right division.

dA\Be = RdAe×RdBe dB �Ae = dBe ×RdAe;

dB/Ae = RRdBe×dAe dA ; Be = RdAe × dBe.
(3.13)

Types: call-by-name Under the call-by-name regime, for each type A of the source language,
the target language has continuations KA = bAc and computations CA = RKA . The call-
by-name interpretation b·c is obtained as the composition of the ·∞ duality map and the d·e
interpretation: bAc , dA∞e. For atoms, bpc = dp∞e = p. For the (co)implications, compare the
cbv intepretation (left) with the cbn interpretation (right) in (3.14).

dA\Be = RdAe×RdBe
RbAc×RbBc

= bB �Ac;
dB �Ae = dBe ×RdAe bBc ×RbAc = bA\Bc;

dB/Ae = RRdBe×dAe RRbBc×bAc = bA ; Bc;
dA ; Be = RdAe × dBe RbAc × bBc = bB/Ac.

(3.14)

Notice that for the call-by-name regime, the starting point is the level of continuations, not values
as under call-by-value. Let’s take the definition of B�A by means of example. For call-by-value,
one starts from dB �Ae (i.e., VB�A) that is a pair VB ×KA; hence its continuation is KB�A =
(VB ×KA) → R and its computation is CB�A = ((VB ×KA) → R) → R. On the other hand,
the call-by-name interpretation starts at the level of continuations: bB �Ac = (KA ×CB)→ R
and from this the computation is obtained as usual, viz. CB�A = ((KA×CB)→ R)→ R, hence
obtaining a higher order function than the one computed under the call-by-value strategy. This
difference will play an important role in the linguistic application of the two strategies.

Terms: cbv versus cbn Given the different CPS types for left and right (co)implications, we
can now turn to their interpretation at the term level. In (3.15), we give the cbv interpretation of
terms, in (3.16) of coterms. We repeat the typing information from (3.5) to assist the reader. The
call-by-name regime is the composition of call-by-value and arrow reversal: b·c , d·∞e. This CPS
interpretation of terms is set up in such a way that for sequents with yield A1, . . . , An ⇒ B, the
cbv interpretation represents the process of obtaining a B computation from A1, . . . , An values;
the cbn interpretation takes A1, . . . , An computations to a B computation. See Propositions 8.1
and 8.3 of [5].

2In the schemas (3.13) and (3.14) we use exponent notation for function spaces, for comparison with [5]. In
the text, we usually shift to the typographically more convenient arrow notation, compare AB versus B → A.
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3. Continuation semantics for symmetric categorial grammar

A dxe = λk.k x x : A

B\A dx \Me = λk.(k λ〈x, β〉.dMe β) x : B, M : A

A/B dM /xe = λk.(k λ〈β, x〉.dMe β) x : B, M : A

B ; A dM � Ke = λk.(dMe λy.(k 〈y, dKe〉)) M : A, K : B

A�B dK � Me = λk.(dMe λy.(k 〈dKe, y〉)) M : A, K : B

B dµα.(x ∗K)e = λα.(dKe x) α : B, x,K : A

(3.15)

A dαe = α α : A

B ; A dα ; Ke = λ〈α, x〉.(dKe x) α : B, K : A

A�B dK � αe = λ〈x, α〉.(dKe x) α : B, K : A

B\A dM n Ke = λk.(dMe λx.(k 〈x, dKe〉)) M : B, K : A

A/B dK o Me = λk.(dMe λx.(k 〈dKe, x〉)) M : B, K : A

A dµ̃x.(M ∗ α)e = λx.(dMe α) x : A, α, M : B

(3.16)

3.5 Application: Scope Construal

In this section we turn to the linguistic application. Our aim is twofold. First we show that a
type assignment (s�s);np for generalized quantifier phrases solves the problems with s/(np\s)
mentioned in §3.1: the type (s� s) ; np uniformly appears in positions that can be occupied by
ordinary noun phrases, and it gives rise to ambiguities of scope construal (local and non-local)
in constructions with multiple GQ and/or multiple choices for the scope domain. Second, we
relate the CPS interpretation to the original interpretation for Lambek derivations by defining
translations V·W,T·U lifting the lexical constants from the type they have in the original Lambek
semantics to the type required by the cbv or cbn level. To realize this second aim, we assume
that the result type R is the type of truth values. For the rest our modeltheoretic assumptions
are standard. The domain of interpretation for np values is E (the set of individuals), for s values
it is {0, 1} (the set of truth values). Out of E and {0, 1} one then constructs complex domains in
terms of function spaces and Cartesian products. In the case of the original Lambek semantics
(or Montague grammar) these domains of interpretation are obtained indirectly, via a mapping
between syntactic and semantic types where np′ = e, s′ = t and (A\B) = (B/A) = A′ → B′,
with Dome = E and Domt = {0, 1}.
We start with a fully worked-out example of a ‘S goes to NP VP’ combination, ‘Alice left’. The
official sequent derivation is given in (3.17). Consulting the dictionary of Table 3.1, we fill in the
lexical items alice and left of type np and np\s respectively for the x and y parameters of the
proof term. Call the resulting term M . We now compare the CPS transformation of M under
the cbv and cbn execution regimes as defined in (3.15) and (3.16).

x : np
x−−→ np s

α−−→ α : s

x : np ◦ np\s x n α−−−−→ α : s
(\L)

x : np ◦ y : np\s µα.(y ∗ (x n α))−−−−−−−−−−−→ s

(�)
(3.17)

Consider first cbv, on the left in Figure 3.4. Recall that under the cbv regime a sequent with
yield A1, . . . , An ⇒ B maps the Ai values to a B computation. A value of type np\s (Vnp\s),
as we see in Table 3.1, is a function taking a pair of an np value and an s continuation to
the result type R, i.e. Vnp ×Ks → R. Combining Vnp and Vnp\s we obtain an s computation,
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µα.(y ∗ (x n α))

lex

��
µα.(left ∗ (alice n α)) (= M)

dMe
cbvtthhhhhhhhhhhhhhhhhh

bMc=dM∞e
cbn

++XXXXXXXXXXXXXXXXXXXXXXX

λc.(VleftW 〈ValiceW, c〉)

V·W
��

λc.(TleftU 〈c,TaliceU〉)

T·U
��

λc.(λ〈x, c′〉.(c′ (left x)) 〈alice, c〉)

β **VVVVVVVVVVVVVVVVVV
λc.(λ〈c′, q〉.(q λx.(c′ (left x))) 〈c, λc′′.(c′′ alice)〉)

βssffffffffffffffffffffff

λc.(c (left alice))

Figure 3.4: ‘Alice left’: cbv versus cbn

Table 3.1: Lexical entries. dAe is a value of type A; bAc is a continuation of type A.

word type alias d·e cbv b·c cbn
alice, lewis np dnpe bnpc

left np\s iv Rdnpe×Rdse bsc ×Rbnpc

teases (np\s)/np tv RRdive×dnpe Rbnpc × bivc
thinks (np\s)/s tvs RRdive×dse Rbsc × bivc

somebody s/(np\s) su RRdse×dive Rbivc × bsc

Table 3.2: Lifting lexical constants: cbv regime

ValiceW = alice
VlewisW = lewis
VleftW = λ〈x, c〉.(c (left x))

VteasesW = λ〈v, y〉.(v λ〈x, c〉.(c ((teases y) x)))
VsomebodyW = λ〈c, v〉.(∃ λx.(v 〈x, c〉))

i.e. (s → R) → R, by giving the Vnp\s function the pair it requires, and abstracting over the
Ks component. This is what we see in dMe = λc.(VleftW 〈ValiceW, c〉). The next step is to
relate the cbv CPS interpretation to the original semantics of the Lambek calculus. In the
original semantics, ‘Alice’ and ‘left’ would be interpreted in terms of constants of type e and
e → t respectively. The mapping V·W in Table 3.2 produces terms of type Vnp and Vnp\s from
constants alice and left of type e and e→ t. Substituting these in dMe (and β conversion) gives
λc.(c (left alice)). Combined with the trivial s continuation (the identity function on {0, 1}) one
obtains (left alice).
On the right in Figure 3.4 we have the cbn interpretation. Under the cbn regime, a sequent
with yield A1, . . . , An ⇒ B maps Ai computations to a B computation. We obtain the cbn
interpretation by duality: bMc = dM∞e = dµ̃x.((x � alice) ∗ left)e, i.e. we read off the cbn
interpretation from the mirror image derivation (np ◦ np\s ⇒ s)∞, which is s ⇒ s � np ◦ np.
For the lexical items involved, Table 3.1 gives the continuation types bAc corresponding to the
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3. Continuation semantics for symmetric categorial grammar

Table 3.3: Lifting lexical constants: cbn regime

TaliceU = λc.(c alice)
TlewisU = λc.(c lewis)
TleftU = λ〈c, q〉.(q λx.(c (left x)))

TteasesU = λ〈q, 〈c, q′〉〉.(q′ λx.(q λy.(c ((teases y) x))))
TsomebodyU = λ〈v, c〉.(∃ λx.(v 〈c, λc′.(c′ x)〉))

source language types A. To obtain the required types for A computations, we take functions
from these continuations into R. Specifically, the verb TleftU in this case is interpreted as a
function taking a pair Ks × Cnp into R; the noun phrase argument TaliceU also is of type Cnp,
i.e. (Vnp → R)→ R. Combining these produces a result of type Cs again by abstracting over the
Ks component of the pair given to the verb: bMc = λc.(TleftU 〈c,TaliceU〉). The mapping T·U in
Table 3.3 produces terms of type bnpc → R and bnp\sc → R (i.e. computations) from constants
alice and left of type e and e→ t. Substituting these in bMc (and β conversion) gives the same
result as what we had under the cbv regime.
The reader is invited to go throught the same steps for ‘Alice teases Lewis’. The term for
the derivation is µα.(teases ∗ ((alice n α) o lewis)) (= M), with the CPS interpretations in
(3.18). The variable v is of type Knp\s, a verb phrase continuation. Consulting the cbv and cbn
dictionaries of Tables 3.2 and 3.3, we can substitute the required lambda terms for the lexical
constants. After this substitution and β reduction, the cbv and cbn interpretations converge on
λc.(c ((teases lewis) alice)).

dMe = λc.(VteasesW 〈λv.(v 〈ValiceW, c〉),VlewisW〉);
bMc = λc.(TteasesU 〈TlewisU, 〈c,TaliceU〉〉). (3.18)

In Fig 3.5 we highlight the type structure of the CPS interpretations for this sentence, showing
that (i) call-by-value produces terms consisting of function applications of values to pairs of
values and continuations (left tree), whereas (ii) call-by-name produces terms consisting of the
application of computation to pairs of computations and continuation types. The observed
difference will be relevant for the interpretation of generalized quantifiers expressions to which
we now turn.

Scope construal: simple subject GQ In Table 3.1, one finds the CPS image under cbv
and cbn of a Lambek-style s/(np\s) type assignment for a GQ expression such as ‘somebody’.
The corresponding lexical recipes for the cbv and cbn regimes are given in Tables 3.2 and 3.3,
respectively. We leave it as an exercise for the reader to work through a derivation with these
types/terms and to verify that a type assignment s/(np\s) is restricted to subject position and
to local scope, as we saw in §3.1. Let us turn then to derivations with the type assignment we
have proposed: (s� s) ; np (alias: gq) — a type assignment that will accommodate both local
and non-local scope construals. In (3.19) we compute the term for the derivation of ‘somebody
left’, using the abbreviatory conventions discussed in the Appendix (e.g., the 1 in step 2. stands
for the proof term computed at step 1.); in (3.20) its CPS transformation under cbv and cbn.
(z : Vs, q : Cnp, y : Ks�s)
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Continuation semantics for LG 11

Kt → R = Ct

R

V(e→(e→t))

teases

Ke→t × Ve

Ke→t

R

v : Ve→t Ve ×Kt

Ve

alice

c : Kt

Ve

lewis

Kt → R = Ct

R

C(e→(e→t))

teases

Ce × (Kt × Ce)

Ce

lewis

Kt × Ce

c : Kt Ce

alice

Fig. 5. Type schemas for cbv (left) versus cbn (right).

Scope construal: simple subject GQ In Table 1, one finds the CPS image under cbv and cbn of a
Lambek-style s/(np\s) type assignment for a GQ expression such as ‘somebody’. The correspond-
ing lexical recipes for the cbv and cbn regimes are given in Tables 2 and 3, respectively. We leave
it as an exercise for the reader to work through a derivation with these types/terms and to verify
that a type assignment s/(np\s) is restricted to subject position and to local scope, as we saw
in §1. Let us turn then to derivations with the type assignment we have proposed: (s ! s) ! np
(alias: gq) — a type assignment that will accommodate both local and non-local scope construals.
In (19) we compute the term for the derivation of ‘somebody left’, using the abbreviatory con-
ventions discussed in the Appendix (e.g., the 1 in step 2. stands for the proof term computed at
step 1.); in (20) its CPS transformation under cbv and cbn. (z : Vs, q : Cnp, y : Ks!s)

1. µα.(left∗(x!α)) s◦

np

x

(np\s)

left

2. µβ.(somebody∗bind(x, 1 ,β))) s◦

gq

somebody

(np\s)

left

(19)

2 = N #N$ = λc.(("left# 〈π2"somebody#,λz.(π1"somebody# 〈z, c〉)〉);
'N( = λc.(($somebody% λ〈q, y〉.(y 〈c,λc′.($left% 〈c′, q〉)〉)). (20)

The difference between cbv and cbn regimes observed above with respect to "·#,$·% in the term
in (18) turns out to be of particular interest here. In (21) we give Vgq and Kgq for the cbv and
cbn interpretations respectively. For cbv, this is a pair of an s ! s continuation and an np value.
This np value would have to be realised as the variable bound by the (logical) constant ∃ (of
type (e → t) → t) in the "·# translation. Such a binding relation cannot be established from the
Ks!s component of the pair. For cbn, the situation is different: 'gq( has the required structure to
specify the lifted lexical recipe of (22). Q is a function taking a pair of a np computation and an
(s ! s) continuation to the result type R. In the body of the term, we apply Q to the Cnp term
λk.(k x), where x is the e type variable bound by ∃, and to the closed term λ〈c, p〉.(p c) obtained
by applying the Cs variable p to the Ks variable c. In combination with $left% given above, 'N(
simplifies to λc.(∃ λx.(c (left x))) as required. From here on, we stay with the cbn regime.

#gq$ = R$s%×R!s"
× #np$ 'gq( = RR#np$×R#s$×R#s$

. (21)

$somebody% = λQ.(∃ λx.(Q 〈λk.(k x),λ〈c, p〉.(p c)〉)). (22)

Figure 3.5: Type schemas for cbv (left) versus cbn (right).
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Scope construal: simple subject GQ In Table 1, one finds the CPS image under cbv and cbn of a
Lambek-style s/(np\s) type assignment for a GQ expression such as ‘somebody’. The correspond-
ing lexical recipes for the cbv and cbn regimes are given in Tables 2 and 3, respectively. We leave
it as an exercise for the reader to work through a derivation with these types/terms and to verify
that a type assignment s/(np\s) is restricted to subject position and to local scope, as we saw
in §1. Let us turn then to derivations with the type assignment we have proposed: (s ! s) ! np
(alias: gq) — a type assignment that will accommodate both local and non-local scope construals.
In (19) we compute the term for the derivation of ‘somebody left’, using the abbreviatory con-
ventions discussed in the Appendix (e.g., the 1 in step 2. stands for the proof term computed at
step 1.); in (20) its CPS transformation under cbv and cbn. (z : Vs, q : Cnp, y : Ks!s)

1. µα.(left∗(x!α)) s◦

np

x

(np\s)

left

2. µβ.(somebody∗bind(x, 1 ,β))) s◦

gq

somebody

(np\s)

left

(19)

2 = N #N$ = λc.(("left# 〈π2"somebody#,λz.(π1"somebody# 〈z, c〉)〉);
'N( = λc.(($somebody% λ〈q, y〉.(y 〈c,λc′.($left% 〈c′, q〉)〉)). (20)

The difference between cbv and cbn regimes observed above with respect to "·#,$·% in the term
in (18) turns out to be of particular interest here. In (21) we give Vgq and Kgq for the cbv and
cbn interpretations respectively. For cbv, this is a pair of an s ! s continuation and an np value.
This np value would have to be realised as the variable bound by the (logical) constant ∃ (of
type (e → t) → t) in the "·# translation. Such a binding relation cannot be established from the
Ks!s component of the pair. For cbn, the situation is different: 'gq( has the required structure to
specify the lifted lexical recipe of (22). Q is a function taking a pair of a np computation and an
(s ! s) continuation to the result type R. In the body of the term, we apply Q to the Cnp term
λk.(k x), where x is the e type variable bound by ∃, and to the closed term λ〈c, p〉.(p c) obtained
by applying the Cs variable p to the Ks variable c. In combination with $left% given above, 'N(
simplifies to λc.(∃ λx.(c (left x))) as required. From here on, we stay with the cbn regime.

#gq$ = R$s%×R!s"
× #np$ 'gq( = RR#np$×R#s$×R#s$

. (21)

$somebody% = λQ.(∃ λx.(Q 〈λk.(k x),λ〈c, p〉.(p c)〉)). (22)

(3.19)

2 = N dNe = λc.((VleftW 〈π2VsomebodyW, λz.(π1VsomebodyW 〈z, c〉)〉);
bNc = λc.((TsomebodyU λ〈q, y〉.(y 〈c, λc′.(TleftU 〈c′, q〉)〉)). (3.20)

The difference between cbv and cbn regimes observed above with respect to V·W,T·U in the term
in (3.18) turns out to be of particular interest here. In (3.21) we give Vgq and Kgq for the cbv and
cbn interpretations respectively. For cbv, this is a pair of an s� s continuation and an np value.
This np value would have to be realised as the variable bound by the (logical) constant ∃ (of
type (e→ t)→ t) in the V·W translation. Such a binding relation cannot be established from the
Ks�s component of the pair. For cbn, the situation is different: bgqc has the required structure
to specify the lifted lexical recipe of (3.22). Q is a function taking a pair of a np computation
and an (s�s) continuation to the result type R. In the body of the term, we apply Q to the Cnp

term λk.(k x), where x is the e type variable bound by ∃, and to the closed term λ〈c, p〉.(p c)
obtained by applying the Cs variable p to the Ks variable c. In combination with TleftU given
above, bNc simplifies to λc.(∃ λx.(c (left x))) as required. From here on, we stay with the cbn
regime.

dgqe = Rdse×Rdse
× dnpe bgqc = RRbnpc×Rbsc×Rbsc

. (3.21)

TsomebodyU = λQ.(∃ λx.(Q 〈λk.(k x), λ〈c, p〉.(p c)〉)). (3.22)
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Ambiguous scope construal Compare ‘Alice teases Lewis’ with ‘everybody teases somebody’
involving two GQ expressions. Starting from 1 µα.(teases ∗ ((x n α) o y)), the derivation can
be completed in two ways, depending on whether we first bind the object variable y, then the
subject variable x, or vice versa. On the left the subject wide scope reading, on the right the
object wide scope reading.

12 Bernardi and Moortgat

Ambiguous scope construal Compare ‘Alice teases Lewis’ with ‘everybody teases somebody’ in-
volving two GQ expressions. Starting from 1 µα.(teases ∗ ((x ! α) " y)), the derivation can be
completed in two ways, depending on whether we first bind the object variable y, then the subject
variable x, or vice versa. On the left the subject wide scope reading, on the right the object wide
scope reading.

1. s◦

np

x

tv

teases

np

y

µα.(teases ∗ ((x ! α) " y))

2a. s◦

np

x
tv

teases

gq

somebody

µβ.(somebody ∗ bind(y, 1 ,β))

3a. s◦

gq

everybody
tv

teases

gq

somebody

µγ.(everybody ∗ bind(x, 2a , γ)))

2b. s◦

gq

everybody

tv

teases

np

y

µγ.(everybody ∗ bind(x, 1 , γ))

3b. s◦

gq

everybody
tv

teases

gq

somebody

µβ.(somebody ∗ bind(y, 2b ,β)))

By applying the method described with previous examples, one obtains the ∀/∃ reading for (3a)
and the ∃/∀ reading for (3b). First, the terms are interpreted by means of the definitions in (15)
and (16) obtaining the following results:

$3a% = λc.(!evrb." λ〈q, y〉.(!smb." λ〈p, z〉.(y 〈c,λc′.(z 〈c′,λc′′.(!teases" 〈p, 〈c′′, q〉〉)〉)〉)));
$3b% = λc.(!smb." λ〈p, z〉.(!evrb." λ〈q, y〉.(z 〈c,λc′.(y 〈c′,λc′′.(!teases" 〈p, 〈c′′, q〉〉)〉)〉))). (23)

where the variables p, q of type Cnp are for the object and subject respectively. The y, z variables
are s ( s continuations, the (primed) c are s continuations. Then, the !·" translation is applied;
the readings reduce to λc.(∀ λx.(∃ λy.(c ((teases y) x)))) and λc.(∃ λy.(∀ λx.(c ((teases y) x)))),
respectively.

Local versus non-local scope Consider the two readings for the sentence ‘Alice thinks somebody
left’. The ambiguity arises here from the fact that in this context the GQ can non-deterministically
select the embedded or the main clause s as its scope domain. We give the terms for these two
derivations (local (a) versus non-local (b) scope) in (24), reusing the components 1 and 2 of
(19), and the cbn interpretations of these terms in (25). These can be further reduced to (26)
via a lexical recipe !thinks" = λ〈p, 〈c, q〉〉.(q λx.(c ((thinks (p λc.c)) x))) expressed in terms of a
constant thinks of type t → (e → t).

a. µγ.(thinks ∗ ((alice ! γ) " 2 ));
b. µγ.(somebody ∗ bind(x, µγ′.(thinks ∗ ((alice ! γ′) " 1 )), γ)).

(24)

$a% = λc.(!thinks" 〈λc′.(!somebody" λ〈q, y〉.(y 〈c′,λc′′.(!left" 〈c′′, q〉)〉)), 〈c,!alice"〉〉);
$b% = λc.(!somebody" λ〈q, y〉.(y 〈c,λc′.(!thinks" 〈λc′′.(!left" 〈c′′, q〉), 〈c′,!alice"〉〉)〉)). (25)

$a% !β λc.(c ((thinks (∃ left)) alice));
$b% !β λc.(∃ λy.(c ((thinks (left y)) alice))). (26)

By applying the method described with previous examples, one obtains the ∀/∃ reading for (3a)
and the ∃/∀ reading for (3b). First, the terms are interpreted by means of the definitions in
(3.15) and (3.16) obtaining the following results:

b3ac = λc.(Tevrb.U λ〈q, y〉.(Tsmb.U λ〈p, z〉.(y 〈c, λc′.(z 〈c′, λc′′.(TteasesU 〈p, 〈c′′, q〉〉)〉)〉)));
b3bc = λc.(Tsmb.U λ〈p, z〉.(Tevrb.U λ〈q, y〉.(z 〈c, λc′.(y 〈c′, λc′′.(TteasesU 〈p, 〈c′′, q〉〉)〉)〉))).

(3.23)
where the variables p, q of type Cnp are for the object and subject respectively. The y, z variables
are s� s continuations, the (primed) c are s continuations. Then, the T·U translation is applied;
the readings reduce to λc.(∀ λx.(∃ λy.(c ((teases y) x)))) and λc.(∃ λy.(∀ λx.(c ((teases y) x)))),
respectively.

Local versus non-local scope Consider the two readings for the sentence ‘Alice thinks some-
body left’. The ambiguity arises here from the fact that in this context the GQ can non-
deterministically select the embedded or the main clause s as its scope domain. We give the
terms for these two derivations (local (a) versus non-local (b) scope) in (3.24), reusing the com-
ponents 1 and 2 of (3.19), and the cbn interpretations of these terms in (3.25). These can be
further reduced to (3.26) via a lexical recipe TthinksU = λ〈p, 〈c, q〉〉.(q λx.(c ((thinks (p λc.c)) x)))
expressed in terms of a constant thinks of type t→ (e→ t).

a. µγ.(thinks ∗ ((alice n γ) o 2 ));
b. µγ.(somebody ∗ bind(x, µγ′.(thinks ∗ ((alice n γ′) o 1 )), γ)). (3.24)
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bac = λc.(TthinksU 〈λc′.(TsomebodyU λ〈q, y〉.(y 〈c′, λc′′.(TleftU 〈c′′, q〉)〉)), 〈c,TaliceU〉〉);
bbc = λc.(TsomebodyU λ〈q, y〉.(y 〈c, λc′.(TthinksU 〈λc′′.(TleftU 〈c′′, q〉), 〈c′,TaliceU〉〉)〉)).

(3.25)
bac;β λc.(c ((thinks (∃ left)) alice));
bbc;β λc.(∃ λy.(c ((thinks (left y)) alice))). (3.26)

3.6 Conclusions, Further Directions

In this paper we have moved from asymmetric Lambek calculus with a single succedent formula
to the symmetric Lambek-Grishin calculus, where both the antecedent and the succedent are
formula structures, configured in terms of ⊗ and ⊕ respectively, and where the ⊗ and ⊕ en-
vironments can interact in a structure-preserving way. This move makes it possible to import
into the field of natural language semantics the powerful tools of λµ-calculus. The main attrac-
tion of the proposed continuation semantics, in our view, lies in the fact that LG allows us to
fully exploit the duality between Lambek’s directional /, \ implications and the corresponding
directional ;,� difference operations, at the level of syntax and at the level of semantics. We
thus restore Curry’s original idea of an isomorphism between proofs and terms, rather than the
weaker homomorphic view of standard Lambek (or Montagovian) semantics.
Our approach differs in a number of respects from the related work cited in §3.1. Abstracting away
from the directionality issue, de Groote’s original application of λµ calculus to scope construal
syntactically types generalized quantifier phrases as np with meaning representation µαKe(∃ α).
As a result, a sentence with multiple GQ phrases is associated with a unique parse/term; the
multiple readings for that term are obtained as a result of the non-confluence of λµ calculus,
which is considered as a feature, not a bug. Our approach in contrast is true to the principle
that multiple readings can only arise as the images of distinct proofs, given the Curry-Howard
isomorphism between proofs and terms. Barker [1, 2] uses a simplified continuation semantics,
which lifts types A to (A → R) → R ‘externally’, without applying the CPS transformation to
the internal structure of complex types. This breaks the symmetry which is at the heart of our
dual treatment of /, \ vs ;,�. The structural-rule account of scope flexibility in [3, 20] suffers
from commutativity problems.
The approach described here, like Hendriks’s type-shifting approach, creates all combinatorial
possibilities for scope construal. However, it is well known that, depending on the choice of
particular lexical items, many of these construals will in fact be unavailable. Bernardi [4] uses the
control modalities ♦,2 to calibrate the scopal behaviour of particular classes of GQ expressions.
Adding ♦,2 and a pair of dually residuated modalities to LG is straightforward. In a follow-up
paper, we plan to study the continuation semantics of these operations, relating them to the
shift and reset constructs one finds in the theory of functional programming languages and
that have been considered in [2, 20].
Finally, the interpretation given here construes scopal ambiguities in a static setting. In a recent
paper, de Groote [8] develops a continuation-based approach towards dynamic interpretation.
A natural topic for further research would be to investigate how to incorporate this dynamic
perspective in our setting, and how to extend the approach of [8] with the difference operations
and the concomitant Grishin interaction principles.

3.7 Appendix: Shorthand Format for Sequent Derivations

As an example of the LG term assignment, (3.27) gives the derivation showing how one obtains
a Lambek-style GQ type C/(A\B) from a (B � C) ; A source.
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C
α−−→ α : C

z : A
z−−→ A B

γ−−→ γ : B

z : A ◦A\B z n γ−−−−→ γ : B
(\L)

z : A ◦ y : A\B µγ.(y ∗ (z n γ))−−−−−−−−−−→ B

(�)

z : A ◦ y : A\B (µγ.(y ∗ (z n γ))) � α−−−−−−−−−−−−−−→ B � C ◦ α : C

(�R)

A ◦ y : A\B eµz.((µγ.(y ∗ (z n γ))) � α) ∗ β)−−−−−−−−−−−−−−−−−−−−−→ β : B � C ◦ α : C

(
)

(B � C) ; A ◦ y : A\B β ; (eµz.((µγ.(y ∗ (z n γ))) � α) ∗ β))−−−−−−−−−−−−−−−−−−−−−−−−−→ α : C

(;L)

x : (B � C) ; A ◦ y : A\B µα.(x ∗ (β ; (eµz.((µγ.(y ∗ (z n γ))) � α) ∗ β)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C

(�)

x : (B � C) ; A
(µα.(x ∗ (β ; (eµz.((µγ.(y ∗ (z n γ))) � α) ∗ β)))) / y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C/(A\B)

(/R)
(3.27)

This example shows that except for the most simple derivations, the sequent tree format soon
becomes unwieldy. Below we introduce a more user-friendly line format, which graphically high-
lights the tree structure of the antecedent and succedent parts. In the line format, each row has
(a) a line number, (b) the (co)term for the currently active formula, and the antecedent (c) and
succedent (d) structures in tree format. The cursor singles out the currently active formula. It
takes the form ·• in the antecedent, and ·◦ in the succedent. With n we refer to the (co)term
at line n. Compare (3.27) with Figure 3.6, the derivation for a sentence ‘Somebody left’ in line
format.
We reduce the length of a derivation further using the (qL) and (qR) rules of inference discussed in
the main text and folding : a sequence of n (/, \R) (respectively (�,;L)) one-premise inferences
is folded into a one-step one-premise inference; a (�) step (or (
) respectively) followed by a
sequence of n (/, \L) (respectively (�,;R)) two-premise inferences is folded into a one-step n+1
premise inference; an n premise inference with m non-lexical axiom premises is contracted to an
n − m premise inference. Where the succedent (antecedent) tree is just a point, we write the
highlighted formula as the root of the antecedent (succedent) tree. The result of applying these
conventions for the example sentence ‘somebody left’ is (3.19) in the main text.
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α
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np• (np\s)

left

(s" s)

γ

s

β

8. γ " 7

((s" s) " np)• (np\s)
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s

β
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We reduce the length of a derivation further using the (qL) and (qR) rules of inference discussed
in the main text and folding : a sequence of n (/, \R) (respectively (","L)) one-premise inferences
is folded into a one-step one-premise inference; a (!) step (or (") respectively) followed by a
sequence of n (/, \L) (respectively (","R)) two-premise inferences is folded into a one-step n + 1
premise inference; an n premise inference with m non-lexical axiom premises is contracted to an
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highlighted formula as the root of the antecedent (succedent) tree. The result of applying these
conventions for the example sentence ‘somebody left’ is (19) in the main text.

Figure 3.6: Tree-style derivation
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4

Relational semantics
for the Lambek-Grishin calculus

Natasha Kurtonina and Michael Moortgat

Abstract We study ternary relational semantics for symmetric versions of the Lambek calculus
with interaction principles due to Grishin (1983). We obtain completeness on the basis of a
Henkin-style weak filter construction.

Thanks We thank Anna Chernilovskaya and the anonymous MOL’07 referees for helpful com-
ments on an earlier version of this paper.

4.1 Background, motivation

The categorial calculi proposed by Lambek and their current typelogical extensions respect an
“intuitionistic” restriction: in a Gentzen presentation, Lambek sequents are of the form Γ⇒ B,
where B is a single formula, and Γ is a tree structure with formulas A1, . . . , An at the yield.
Depending on the particular calculus one works with, the antecedent structure can degener-
ate into a list or a multiset of formulas. The intuitionistic restriction is a serious expressive
limitation when it comes to using the Lambek framework in the analysis of natural language
syntax and semantics. Core phenomena such as displacement or scope construal are beyond
the reach of the basic Lambek calculus; to deal with such phenomena, various extensions have
been proposed based on structural rules, which can be introduced implicitly or explicitly, and
with global or modally-controlled application regimes. The price one pays for such extensions is
high: whereas the basic Lambek calculus has a polynomial recognition problem [3], already the
simplest extension with an associative regime for ⊗ is known to be NP complete as shown in [8].
In a remarkable paper written in 1983, V.N. Grishin [4] has proposed a different strategy for
generalizing the Lambek calculi. The starting point for Grishin’s approach is a symmetric ex-
tension of the Lambek calculus: in addition to the familiar operators ⊗, \, / (product, left and
right division), one also considers a dual family ⊕,�,;: coproduct, right and left difference.1

The resulting vocabulary is given in (4.1).

1A little pronunciation dictionary: read B\A as ‘B under A’, A/B as ‘A over B’, B ; A as ‘B from A’ and
A�B as ‘A less B’. We follow [6] in using the notation ⊕ for the coproduct, which is a multiplicative operation.
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A,B ::= p | atoms: s sentence, np noun phrases, . . .
A⊗B | B\A | A/B | product, left vs right division
A⊕B | A�B | B ; A coproduct, right vs left difference

(4.1)

Algebraically, the Lambek operators form a residuated triple; likewise, the ⊕ family forms a dual
residuated triple. The minimal symmetric categorial grammar, which we will refer to as LG∅,
consists of just the preorder axioms of (4.2), i.e. reflexivity and transitivity of the derivability
relation, together with the (dual) residuation principles given in (4.3). This minimal system
preserves the polynomiality of the asymmetric NL as shown in [2].

(refl) A ` A; from A ` B and B ` C infer A ` C (trans) (4.2)

(rp) A ` C/B iff A⊗B ` C iff B ` A\C
(drp) B ; C ` A iff C ` B ⊕A iff C �A ` B

(4.3)

The minimal symmetric system LG∅ doesn’t have the required expressivity to address the linguis-
tic problems mentioned in the introduction. For every theorem of the (non-associative) Lambek
calculus, LG∅ also has its image under arrow reversal. Interaction between the ⊗ and the ⊕
family, however, is limited to glueing together theorems of the two families with the transitivity
rule.
What makes Grishin’s work attractive from the perspective of categorial grammar, is the system-
atic theory he presents for extending LG∅ with extra axioms. In section 2.7 of his paper, Grishin
presents sixteen options for extending LG∅. Eight of these represent the familiar associativity
and/or commutativity postulates for ⊗ and symmetrically ⊕. Since these choices destroy sen-
sitivity for word order and/or constituent structure, we will ignore them. The remaining eight
options are principles of interaction relating connectives from the ⊗ and the ⊕ family. They
naturally cluster in two groups of four, which we will refer to as G↑ and G↓.
Consider first the group G↑ (the Class IV postulates, in Grishin’s own terminology) which con-
sists of the principles in (4.4). G1 and G3 have been called mixed associativity principles, G2
and G4 mixed commutativity principles. We think the use of the concepts “associativity” and
“commutativity” is misleading here: as we will see below, the ⊗ and ⊕ families have individual
interpreting relations of fusion and fission respectively. We prefer to refer to G1–G4 as (weak)
distributivity principles.

(G1) (A ; B)⊗ C ` A ; (B ⊗ C) C ⊗ (B �A) ` (C ⊗B)�A (G3)
(G2) C ⊗ (A ; B) ` A ; (C ⊗B) (B �A)⊗ C ` (B ⊗ C)�A (G4) (4.4)

Intuitively, the interacion principles in (4.4) deal with the situation where a difference operation
(; or �) is trapped in a ⊗ context where they are inaccessible for logical manipulation. Consider
first G1 and G2. On the lefthand side of the turnstile, a formula A ; B occurs as the first or
second coordinate of a product. The postulates invert the dominance relation between ⊗ and ;,
raising the subformula A to a position where it can be shifted to the righthand side by means of
the dual residuation principles of (4.3). G3 and G4 are the images of G1 and G2 under left-right
symmetry.
Interaction principles dual to those in (4.4) are given in (4.5): they deal with the situation where
a left or right implication is trapped within a ⊕ context, this time raising the A subformula to
the position where it can be shifted to the lefthand side by means of the residuation principles

58



Background, motivation

LG∅ + G↓,↑
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Figure 4.1: The Lambek-Grishin landscape

of (4.3). We leave it to the reader to check that the forms Gn′ in (4.5) are indeed derivable from
the respective Gn in (4.4) and (4.2)-(4.3).

(G1′) (C ⊕B)/A ` C ⊕ (B/A)
(G2′) (B ⊕ C)/A ` (B/A)⊕ C

A\(B ⊕ C) ` (A\B)⊕ C (G3′)
A\(C ⊕B) ` C ⊕ (A\B) (G4′) (4.5)

Consider next the group G↓ (the Class I postulates in Grishin’s classification), consisting of the
interaction principles in (4.6) — the converses of the principles in group G↑. G↑ and G↓ represent
two independent options to extend LG∅ with interaction principles. The general picture that
emerges then is the landscape of Figure 4.1 where the minimal symmetric Lambek calculus is
extended either with G1–G4 or with their converses, or with the combination of the two.

(G1−1) (A ; B)⊗ C a A ; (B ⊗ C) C ⊗ (B �A) a (C ⊗B)�A (G3−1)
(G2−1) C ⊗ (A ; B) a A ; (C ⊗B) (B �A)⊗ C a (B ⊗ C)�A (G4−1) (4.6)

Linguistic applications The choice we are making for the extension of LG∅ is motivated by
the linguistic application: we consider the full set of structure-preserving interaction principles,
while rejecting same-sort associativity and/or commutativity options. Grishin’s own paper opts
for an associative regime, with both the same-sort associativity for ⊗ and ⊕, and the mixed
associativity of the G↓ group, i.e. G1−1 and G3−1 of (4.6). In the first thorough exposition of
Grishin’s work before it was translated in English, Lambek [6] also adopts the associative regime,
but explores the mixed associativities of both the G↓ and the G↑ groups.
We give two simple illustrations of the potential of the Lambek-Grishin systems in Figure 4.1
to address the problems with asymmetric Lambek calculi mentioned in the introduction. The
first is an example of non-local scope construal; the second is a case of non-peripheral extraction.
In both cases, we start from a lexical type assignment from which the usual Lambek type is
derivable, cf. the assignments in (4.7). What this means is that whatever could be done with
the Lambek types can still be done; but thanks to the Grishin interaction principles, we will be
able to do more.

someone (s� s) ; np ` s/(np\s)
which (n\n)/((s� s)⊕ (s/np)) ` (n\n)/(s/np) (4.7)

In (4.8) one finds one of the two derivations for a sentence of the type ‘Alice thinks someone
left’. Whereas the Lambek assignment s/(np\s) is restricted to local construal in the embedded
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clause, the assignment (s � s) ; np also allows construal at the main clause level. It is this
non-local construal that is represented by (4.8). By means of the interaction principle G2, the
(s � s) subformula raises to the top level leaving behind a np resource in situ; (s � s) then
shifts to the succedent by means of the dual residuation principle, and establishes scope via the
dual application law. Notice that with only the mixed associative interactions, the ; connective
would be trapped in the ⊗ context, and the derivation would fail. The reader is invited to consult
[1] for a detailed analysis of scope construal along these lines. Semantically, the analysis of [1]
is based on a Curry-Howard interpretation of Lambek-Grishin derivations in the continuation-
passing style; this interpretation associates (4.8) with the reading (∃ λx.((thinks (left x)) a)) as
required.

np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s))) ` s s ` (s � s)⊕ s

np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s))) ` (s � s)⊕ s
trans

(s � s) ; (np ⊗ (((np\s)/s)⊗ (np ⊗ (np\s)))) ` s
drp

np ⊗ (((np\s)/s)⊗ (((s � s) ; np)︸ ︷︷ ︸
someone

⊗(np\s))) ` s
G2 (4.8)

The second example is for displacement as in ‘(movie which) John saw on TV’. In the derivation
(4.9) we make use of the combined G↓,↑ principles, i.e. the principles (4.4) and their converses
(4.6). We abbriviate (np\s)/np as tv (transitive verb) and (np\s)\(np\s) as adv (adverb). The
(s/np) subformula is added to the antecedent via the dual residuation principle, and lowered to
the target tv via applications of (Gn−1). The tv context is then shifted to the succedent by
means of the (dual) residuation principles, and the relative clause body with its np hypothesis
in place is reconfigured by means of (Gn) and residuation shifting.

np⊗ ((tv ⊗ np)⊗ adv) ` s s ` (s� s)⊕ s

np⊗ ((tv ⊗ np)⊗ adv) ` (s� s)⊕ s
trans

tv ` ((np\(s� s))/adv)⊕ (s/np)
Gn, rp

np⊗ ((tv � (s/np))⊗ adv) ` s� s
rp,drp

(np⊗ (tv ⊗ adv))� (s/np) ` s� s
Gn−1

np⊗ (tv ⊗ adv) ` (s� s)⊕ (s/np)
drp

(4.9)

An attractive property of the Lambek-Grishin systems in Figure 4.1 is that the expressivity
resides entirely in the interaction principles: the composition operation ⊗ in itself (and the dual
⊕) allows no structural rules at all, which means that the resulting notion of wellformedness is
fully sensitive to linear order and constituent structure of the grammatical material. It is shown
in [7] that the relation of type similarity of LG∅ + G↑ is as strong as similarity in (associative,
commutative) LP: A ∼ B iff the images of A and B in a free Abelian group interpretation are
equal. In LP one obtains this notion of ∼ by sacrificing order and constituent sensitivity; in the
Lambek-Grishin setting, the same notion of similarity is obtained in a structure-preserving way.

4.2 Relational semantics

Let us turn now to the frame semantics for LG. In (4.10) and (4.11) we compare the truth
conditions for the fusion and fission operations. From the modal logic perspective, the binary
type-forming operation ⊗ is interpreted as an existential modality with ternary accessibility
relation R⊗. The residual slashes are the corresponding universal modalities for the rotations of
R⊗. For fission ⊕ and its residuals, the dual situation obtains: ⊕ here is the universal modality
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interpreted w.r.t. an accessibility relation R⊕; the coimplications are the existential modalities for
the rotations of R⊕. Notice that, in the minimal symmetric logic LG∅, R⊕ and R⊗ are distinct
accessibility relations. Frame constraints corresponding to the Grishin interaction postulates of
the group G↑ or G↓ will determine how their interpretation is related.

x  A⊗B iff ∃yz.R⊗xyz and y  A and z  B
y  C/B iff ∀xz.(R⊗xyz and z  B) implies x  C
z  A\C iff ∀xy.(R⊗xyz and y  A) implies x  C

(4.10)

x  A⊕B iff ∀yz.R⊕xyz implies (y  A or z  B)
y  C �B iff ∃xz.R⊕xyz and z 6 B and x  C
z  A ; C iff ∃xy.R⊕xyz and y 6 A and x  C

(4.11)

Henkin construction To establish completeness, we use a Henkin construction. In the Henkin
setting, “worlds” are (weak) filters: sets of formulas closed under `. Let F be the formula
language of (4.1). Let F` = {X ∈ P(F) | (∀A ∈ X)(∀B ∈ F) A ` B implies B ∈ X}. The set
of filters F` is closed under the operations (· ⊗̂ ·), (· ;̂ ·) defined in (4.12) below. It is easy to
show that X ⊗̂ Y and X ;̂ Y are indeed members of F`.

X ⊗̂ Y = {C | ∃A,B (A ∈ X and B ∈ Y and A⊗B ` C)}
X ;̂ Y = {B | ∃A,C (A 6∈ X and C ∈ Y and A ; C ` B}, alternatively
X ;̂ Y = {B | ∃A,C (A 6∈ X and C ∈ Y and C ` A⊕B}

(4.12)

To lift the type-forming operations to the corresponding operations in F`, let bAc be the principal
filter generated by A, i.e. bAc = {B | A ` B} and dAe its principal ideal, i.e. dAe = {B | B ` A}.
Writing X∼ for the complement of X, we have

(†) bA⊗Bc = bAc ⊗̂ bBc (‡) bA ; Cc = dAe∼ ;̂ bCc

proof (†)(⊆) Suppose C ∈ bA⊗Bc, i.e. A ⊗ B ` C. With A′ := A and B′ := B we claim
∃A′, B′ such that A ` A′, B ` B′ and A′⊗B′ ` C, which by (Def ⊗̂) means that C ∈ bAc ⊗̂ bBc
as desired. For the (⊇) direction, we will prove the following lemma:
Lemma 1. A⊗B ∈ X implies bAc ⊗̂ bBc ⊆ X.
Since A⊗B ∈ bA⊗Bc by definition, we then have bAc ⊗̂ bBc ⊆ bA⊗Bc.
proof of lemma 1. Suppose C ∈ bAc ⊗̂ bBc, i.e. ∃A′, B′ such that A′ ∈ bAc i.e. A ` A′,
B′ ∈ bBc i.e. B ` B′, and A′ ⊗ B′ ` C. By Monotonicity, A ⊗ B ` A′ ⊗ B′. By Transitivity,
A⊗B ` C. Together with A⊗B ∈ X this implies C ∈ X as desired.
The (‡) case is entirely similar. (‡)(⊆) Suppose B ∈ bA ; Cc, i.e. A;C ` B. With A′ := A and
C ′ := C we claim ∃A′, C ′ such that A′ ` A, C ` C ′ and A′ ; C ′ ` B, which by (Def ;̂) means
that B ∈ dAe∼ ;̂ bCc as desired. For the (⊇) direction, we show that the folloing holds:
Lemma 2. A ; C ∈ X implies dAe∼ ;̂ bCc ⊆ X.
Since A ; C ∈ bA ; Cc by definition, we then have dAe∼ ;̂ bCc ⊆ bA ; Cc.
proof of lemma 2. Suppose B ∈ dAe∼ ;̂ bCc, i.e. ∃A′, C ′ such that A′ 6∈ dAe∼ i.e. A′ ` A,
C ′ ∈ bCc i.e. C ` C ′, and A′ ; C ′ ` B. By Monotonicity, A ; C ` A′ ; C ′. By Transitivity,
A ; C ` B. Together with A ; C ∈ X this implies B ∈ X as desired.

Canonical model Consider Mc = 〈W c, Rc
⊗, Rc

⊕, V c〉 with
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W c = F`

Rc
⊗XY Z iff Y ⊗̂ Z ⊆ X

Rc
⊕XY Z iff Y ;̂ X ⊆ Z

V c(p) = {X ∈W c | p ∈ X}

Truth lemma We want to show for any formula A ∈ F and filter X ∈ F` that X  A iff
A ∈ X. The proof is by induction on the complexity of A. The base case is handled by V c. Let
us look first at the connectives ⊕,;,�.

Coproduct X  A⊕B iff A⊕B ∈ X

(⇒) Suppose X  A ⊕ B. We have to show that A ⊕ B ∈ X. By (Def ⊕) we have that
∀Y,Z (Y ;̂ X ⊆ Z and Y 6 A) implies Z  B. Setting Y := dAe∼ (therefore, A /∈ Y and, by IH
for Y , Y 6 A) and Z := Y ;̂ X, the antecedent holds, implying Z  B. By IH and the choice
of Z we then have B ∈ Z and B ∈ dAe∼ ;̂ X. By (Def ;̂) B ∈ dAe∼ ;̂ X means ∃A1, A2 such
that A1 6∈ dAe∼, A2 ∈ X and A2 ` A1 ⊕B. A1 6∈ dAe∼ means A1 ` A, hence from A2 ` A1 ⊕B
we get A2 ` A⊕B by Transitivity. Since X is a filter, from A2 ∈ X and A2 ` A⊕B we obtain
A⊕B ∈ X as desired.
(⇐) Suppose A ⊕ B ∈ X. We have to show that X  A ⊕ B, i.e. ∀Y,Z (Rc

⊕XY Z and Y 6
A) implies z  B. Assume Rc

⊕XY Z and Y 6 A. We have to show Z  B. Using IH and the
facts we already have (Rc

⊕XY Z and A 6∈ Y and A⊕B ∈ X) we conclude that A ; (A⊕B) ∈ Z.
But A ; (A⊕B) ` B, so B ∈ Z and by IH Z  B. This is what was needed to show.

Left difference X  A ; B iff A ; B ∈ X

(⇒) Suppose X  A ; B. We have to show that A ; B ∈ X. X  A ; B means ∃Y, Z such
that Rc

⊕ZY X, i.e. Y ;̂ Z ⊆ X, and Y 6 A and Z  B. By IH A 6∈ Y and B ∈ Z. Since also
A ; B ` A ; B, from (Def ;̂) we conclude that A ; B ∈ Y ;̂ Z and therefore A ; B ∈ X as
desired.
(⇐) Suppose A ; B ∈ X. We have to show that X  A ; B. It was shown in Lemma 2 that
A ; B ∈ X implies dAe∼ ;̂ bBc ⊆ X, which means we have Rc

⊕bBcdAe∼X. Since A 6∈ dAe∼
and B ∈ bBc, by IH we claim ∃Y, Z such that Rc

⊕ZY X and Y 6 A and Z  B, which means
X  A ; B as desired.

Right difference X  B �A iff B �A ∈ X

(⇒) Suppose X  B�A, i.e. ∃Y, Z such that X ;̂Z ⊆ Y (Def Rc
⊕) and Y 6 A and Z  B, i.e. by

IH B ∈ Z. To show that B �A ∈ X, we reason by contradiction and assume B �A 6∈ X. From
this assumption and B ∈ Z we have (B �A) ; B ∈ X ;̂ Z by (Def ;̂). Since (B �A) ; B ` A,
A ∈ X ;̂Z, so also A ∈ Y . Contradiction with Y 6 A, hence the assumption B�A 6∈ X doesn’t
hold, as required.
(⇐) Suppose B � A ∈ X. To show that X  B � A we proceed by contraposition and assume
X 6 B�A, i.e. ∀Y, Z (Rc

⊕ZXY and Y 6 A) implies Z 6 B, alternatively (X ;̂ Z ⊆ Y and Z 
B) implies Y  A. Setting Y := X ;̂ Z and Z := bBc, the antecedent holds, hence X ;̂ Z  A
and by IH A ∈ X ;̂ Z. By (Def ;̂) this means ∃A1, A2 such that A1 6∈ X, A2 ∈ bBc and
A2 ` A1 ⊕ A. ¿From A2 ∈ bBc we have B ` A2, so by Transitivity, B `> A1 ⊕ A, and by Dual
residuation, B �A ` A1. Since A1 6∈ X, B �A 6∈ X, contradicting our original assumption.
For the ⊗, /, \ connectives, we refer to [5] (Theorem 3.3.2, p 75), repeated here for convenience.
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Product X  A⊗B iff A⊗B ∈ X

(⇒) Suppose X  A ⊗ B, i.e. ∃Y, Z such that Y ⊗̂ Z ⊆ X, Y  A and Z  B. By IH, A ∈ Y
and B ∈ Z. Since A⊗B ` A⊗B, by (Def ⊗̂) we have A⊗B ∈ X as desired.
(⇐) Suppose A ⊗ B ∈ X. In Lemma 1 we have shown that this implies bAc ⊗̂ bBc ⊆ X,
i.e. Rc

⊗XbAcbBc by (Def Rc
⊗). Since A ∈ bAc, B ∈ bBc, by IH we have bAc  A, bBc  B. By

the truth condition for ⊗ this means X  A⊗B as desired.

Right division We do X  A\B iff A\B ∈ X. The / case is symmetric.
(⇒) Suppose X  A\B, i.e. ∀Y,Z if Rc

⊗ZY X and Y  A then Z  B. Putting Y := bAc and
Z := bAc ⊗̂X, since bAc ⊗̂X ⊆ bAc ⊗̂X we have Rc

⊗ZY X by (Def Rc
⊗), and since A ∈ bAc also

bAc  A by IH, hence bAc ⊗̂ X  B, and by IH B ∈ bAc ⊗̂ X. By (Def ⊗̂) this means ∃C,D
such that C ∈ bAc i.e. A ` C, D ∈ X and C ⊗ D ` B. By Transitivity, A ⊗ D ` B and by
Residuation, D ` A\B. Hence A\B ∈ X as desired.
(⇐) Suppose A\B ∈ X. We have to show that X  A\B, i.e. ∀Y, Z if Rc

⊗ZY X and Y  A then
Z  B. Suppose the antecedent holds, which means Y ⊗̂X ⊆ Z by (Def Rc

⊗) and A ∈ Y by IH.
Together with A\B ∈ X we have A⊗ (A\B) ∈ Z by (Def ⊗̂). Since A⊗ (A\B) ` B, also B ∈ Z.
By IH Z  B which means the consequent of the truth condition for \ holds, hence X  A\B
as desired.
This establishes the Truth Lemma, from which completeness immediately follows.

Theorem Completeness of LG∅. If |= A ` B, then A ` B is provable in LG∅.
proof Suppose A ` B is not provable. Then, by the Truth Lemma, Mc, A 6 B. Since
Mc, A  A, we have Mc 6|= A ` B, and hence 6|= A ` B.

Completeness of extensions with G↑ and/or G↓ In the minimal symmetric system, the R⊗
and R⊕ accessibility relations are distinct. For the extensions with Grishin interaction principles,
we have frame constraints relating the interpretation of R⊗ and R⊕. Consider first the group G↑.
We take (G1) as a representative: (A ; B)⊗ C ` A ; (B ⊗ C). The other axioms in the group
are dealt with analogously. For (G1) we have the constraint in (4.13) (where R(−2)xyz = Rzyx).

∀xyzwv (R⊗xyz ∧ R
(−2)
⊕ ywv)⇒ ∃t (R(−2)

⊕ xwt ∧ R⊗tvz) (4.13)

(†) W V

Y Z

X

@@@@@@@

~~~~~~~

(‡) V Z

W T

@@@@@@@

�������

X

In (†) we depict X  (A ; B) ⊗ C, with W 6 A, V  B and Z  C; in (‡) X  A ; (B ⊗ C).
Dotted lines represent Rc

⊕, solid lines Rc
⊗.

We have to show that in the Henkin model ∀X, Y, Z, V, W construed as in (†), there is a fresh
internal T connecting the root X to the leaves W,V,Z as in (‡). The solution T := V ⊗̂ Z gives
us Rc

⊗TV Z since V ⊗̂Z ⊆ V ⊗̂Z. To also show Rc
⊕TWX, i.e. W ;̂T ⊆ X, suppose A′ ∈W ;̂T .
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We need to show that A′ ∈ X. By (Def ;̂) A′ ∈ W ;̂ T means ∃A1, A2 such that A1 6∈ W ,
A2 ∈ T and A1 ; A2 ` A′. Since T := V ⊗̂Z, A2 ∈ T means ∃B1, B2 such that B1 ∈ V , B2 ∈ Z
and B1⊗B2 ` A2. Taking the configuration (†) together with A1 6∈W and B1 ∈ V , we conclude
Y  A1 ; B1 which in (†) together with B2 ∈ Z implies that X  (A1 ; B1) ⊗ B2. By the
Truth Lemma, this means that (A1 ; B1)⊗B2 ∈ X and since X is a filter and (Gl1) an axiom,
A1 ; (B1 ⊗ B2) ∈ X. But since B1 ⊗ B2 ` A2 we conclude that A1 ; A2 ∈ X. Together with
A1 ; A2 ` A′, since X is a filter, we obtain A′ ∈ X as desired.
Consider next the group of interaction principles G↓, the converses of G↑. As a representative,
we take (Gl1)−1: (A ; B)⊗ C a A ; (B ⊗ C).
This time, we have to show that in the Henkin model ∀X, T, Z, V,W construed as in (‡), there
is a fresh internal Y connecting the root X to the leaves W,V,Z as in (†). Let Y := W ;̂ V .
Since W ;̂ V ⊆ W ;̂ V , Rc

⊕V WY holds. To show that also Rc
⊗XY Z, i.e. Y ⊗̂ Z ⊆ X, suppose

A′ ∈ Y ⊗̂ Z, and let us show that A′ ∈ X. By (Def ⊗̂), A′ ∈ Y ⊗̂ Z means ∃A2B1 such that
A2 ∈ Y , B1 ∈ Z and A2 ⊗ B1 ` A′. Since we had Y := W ;̂ V , A2 ∈ Y by (Def ;̂) means
∃A3C1 such that A3 6∈ W , C1 ∈ V and A3 ; C1 ` A2. Given that C1 ∈ V and B1 ∈ Z, in the
configuration (‡) we have T  C1 ⊗B1, and since A3 6∈ W , X  A3 ; (C1 ⊗B1). By the Truth
Lemma this means that A3 ; (C1⊗B1) ∈ X, and also (A3 ;C1)⊗B1 ∈ X, since X is a filter and
we have (Gl1)−1. Since A3 ; C1 ` A2, we can conclude A2 ⊗ B1 ∈ X, and since A2 ⊗ B1 ` A′,
also A′ ∈ X as desired.

4.3 Concluding remarks

We have established completeness for the minimal symmetric Lambek calculus LG∅ and for
its extension with interaction principles. The construction is neutral with respect to the choice
between G↑ and G↓: it accommodates G1–G4 and the converses G1−1–G4−1 in an entirely similar
way. In further research, we would like to consider more concrete models with a bias towards
either G1–G4 or the converse principles, and to relate these models to the distinction between
‘overt’ and ‘covert’ forms of displacement, as illustrated in the examples of scope construal (4.8)
and extraction (4.9).
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5

Relational completeness of the Lambek-Grishin
calculus with unary modalities

Anna Chernilovskaya

Abstract We study Kripke semantics for LG(♦,�, �,�, \,⊗, /, ;,⊕,�): bi-Lambek calculus
with Grishin Class IV interaction principles for a vocabulary extended with four unary modalities.
We extend the filter-based completeness result of Kurtonina and Moortgat [4] to the language
with unary modalities.

5.1 Introduction

In this paper we study an extension of the Lambek–Grishin calculus with two pairs of unary
modalities. In the middle Nineties Moortgat and Kurtonina [5, 3] introduced an enrichment of
the type language of the Lambek calculus with two unary type-forming operations ♦ and �.
The operations ♦ and � form a residuated pair: they are order-preserving (isotone), and their
compositions satisfy ♦�A ` A ` �♦A. Equivalently, they satisfy the biconditional ♦A ` B iff
A ` �B. In the relational semantics, ♦ and � are interpreted in terms of a binary relation of
accessibility R♦ which one can think of as a feature checking relation. The unary modalities have
found two types of application in linguistic analysis. First, the pattern ♦�A ` A ` �♦A makes
it possible to express selectional restrictions: for each type A there is a more specific ♦�A and
a more general �♦A. Second, unary modalities have been used to formulate controlled versions
of structural rules such as associativity or commutativity, which would be overgenerating when
applied globally.
In the symmetric setting of Lambek-Grishin calculus, we consider ♦,� together with a dual
pair of unary operators which we will denote as � and �. The operators � and � also form a
residuated pair satisfying �A ` B iff A ` �B. In addition to the residuation property, we now
have to consider the interaction between the white and black modalities, and between the unary
and binary type-forming operations, i.e. the analogues of the ⊗/⊕ interactions investigated in
[2]. These interactions take the form of weak distributivity principles and are expressed in three
postulates:

(D1) �A⊗B ` �(A⊗B) (D2) A⊗ �B ` �(A⊗B) (D3) ♦�A ` �♦A.
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5. LG Completeness: unary modalities

5.2 The binary vocabulary

Let us briefly recall the Henkin construction of Kurtonina and Moortgat [4].

Truth conditions Fusion/composition (⊗) and its residuals:
x  A⊗B iff ∃yz.R⊗xyz and y  A and z  B

y  C/B iff ∀xz.(R⊗xyz and z  B) implies x  C

z  A\C iff ∀xy.(R⊗xyz and y  A) implies x  C

Fission (⊕) and its residuals:
x  A⊕B iff ∀yz.R⊕xyz implies (y  A or z  B)
y  C �B iff ∃xz.R⊕xyz and z 6 B and x  C

z  A ; C iff ∃xy.R⊕xyz and y 6 A and x  C

Henkin construction To establish completeness, one uses a Henkin model with (weak) filters
F` as worlds.
The set of filters F` is closed under the following two operations, in terms of which one then
defines the canonical model.
X ⊗̂ Y = {C | ∃A,B (A ∈ X and B ∈ Y and A⊗B ` C)}
X ;̂ Y = {B | ∃A,C (A 6∈ X and C ∈ Y and A ; C ` B}

Canonical model The canonical model is defined as Mc = 〈W c, Rc
⊗, Rc

⊕, V c〉 with

W c = F`

Rc
⊗XY Z iff Y ⊗̂ Z ⊆ X

Rc
⊕XY Z iff Y ;̂ X ⊆ Z

V c(p) = {X ∈W c | p ∈ X}

Completeness theorem If |= A → B, then A ` B is provable in the miminal symmetric
Lambek-Grishin calculus.
The proof follows immediately from the usual Truth Lemma, showing that for any formula
A ∈ F and filter X ∈ F`, X  A iff A ∈ X. For the minimal symmetric Lambek-Grishin
calculus, completeness holds for arbitrary frames (there are no constraints on the interpretation
of R⊗ and R⊕). For systems with extra interaction postulates relating the ⊗ and ⊕ families, one
has extended completeness for interpretations respecting the frame constraints corresponding to
these postulates.
In the following section, we extend this construction to the language with unary modalities.
Before doing so, we remark that, in addition to · ;̂ ·, one can also define operations · �̂ · and · ⊕̂ ·
on the set of filters F`:
Y �̂X = {A | ∃B,C (B 6∈ X and C ∈ Y and C �B ` A}, alternatively
Y �̂X = {A | ∃B,C (B 6∈ X and C ∈ Y and C ` A⊕B}
X ⊕̂ Y = {C | ∀A,B (C ` A⊕B implies (A ∈ X or B ∈ Y )}
To see that X ⊕̂ Y is a filter, assume C ∈ X ⊕̂ Y and C ` D. We have to show that D ∈ X ⊕̂ Y .
C ∈ X ⊕̂Y iff ∀A,B (C ` A⊕B implies (A ∈ X or B ∈ Y )). Take A′, B′ such that D ` A′⊕B′

68



Unary modalities

and A′ /∈ X. We need to prove that B′ ∈ Y . We know that C ` D, hence C ` A′⊕B′. Together
with A′ /∈ X, we get B′ ∈ Y , as desired.

Theorem The structure (F`,⊆op, ⊕̂, ;̂, �̂) is a residuated groupoid, i.e.

X ⊆op Z �̂ Y iff X ⊕̂ Y ⊆op Z iff Y ⊆op X ;̂ Z

and we can reformulate the canonical accessibility relations as

Rc
⊗XY Z iff Y ⊗̂ Z ⊆ X Rc

⊕XY Z iff X ⊆ Y ⊕̂ Z.

proof

In fact, we have to prove that

X ⊇ Z �̂ Y iff X ⊕̂ Y ⊇ Z iff Y ⊇ X ;̂ Z.

Let us prove X ⊕̂ Y ⊇ Z iff Y ⊇ X ;̂ Z, the left equivalence can be done symmetrically.
(⇒) Take B ∈ X ;̂ Z. This means that ∃A,C (A /∈ X and C ∈ Z and A ; C ` B). We know
that X ⊕̂ Y ⊇ Z then C ∈ X ⊕̂ Y , i.e. ∀C1, C2 (C ` C1 ⊕ C2 implies (C1 ∈ X or C2 ∈ Y )). By
residuation, C ` A⊕B. Taking into account that A /∈ X, we conclude B ∈ Y as desired.
(⇐) Take C ∈ Z. We have to show that C ∈ X ⊕̂ Y , i.e. that ∀A,B (C ` A ⊕ B implies (A ∈
X or B ∈ Y )). Take A,B such that C ` A ⊕ B and A /∈ X. Let us prove that B ∈ Y . By
Residuation, we have A ; C ` B. Hence we get B ∈ X ;̂ Z since ∃A,C (A /∈ X and C ∈
Z and A ; C ` B). By the condition Y ⊇ X ;̂ Z, hence B ∈ Y as desired. �

5.3 Unary modalities

For the binary vocabulary, we have an axiomatization in terms of the residuation rules, mono-
tonicity rules and (if desired) interaction postulates in rule form. Transitivity is an admissible
rule for this axiomatization, which then yields a decision procedure. For our four unary modali-
ties we initially consider the following set of rules. (Rules for the interaction principles D1−D3
will be introduced later.)

(Dual) residuation principles

A ` �B
♦A ` B

A ` �B
�A ` B

♦A ` B
A ` �B

�A ` B
A ` �B

Monotonicity principles
A ` B

♦A ` ♦B
A ` B

�A ` �B

A ` B
�A ` �B

A ` B
�A ` �B
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Consider the two symmetries that we have found in LG(\,⊗, /, ;,⊕,�): one left-right order-
preserving symmetry ./, the other is order-reversing ∞: A ` B iff A./ ` B./ iff B∞ ` A∞.

./
C/D A⊗B B ⊕A D ; C

D\C B ⊗A A⊕B C �D

∞
C/B A⊗B A\C

B ; C B ⊕A C �A

The images of the modalities are the following:

(♦A)./ = �(A./)

(♦A)∞ = �(A∞)

(�A)./ = �(A./)

(�A)∞ = �(A∞)

The rules for the modalities then comply with a theorem that was originally stated for the
Lambek–Grishin calculus without unary modalities: A ` B iff A./ ` B./ iff B∞ ` A∞ (proof is
by induction on the length of derivations of A ` B in the monotonicity based system with unary
modalities).

Truth conditions for unary modalities Truth conditions for ♦ and �:
x  ♦A iff ∃y.R♦xy and y  A

x  �A iff ∀y.R♦yx implies y  A

Truth conditions for � and �:
x  �A iff ∃y.R�xy and y  A

x  �A iff ∀y.R�yx implies y  A

Henkin construction We define two new (existential) operations on the set of filters:
♦X = {B | ∃A (A ∈ X and ♦A ` B)}
�X = {B | ∃A (A ∈ X and �A ` B)}
Both ♦X and �X are filters: take B ∈ ♦X such that B ` C. Then there is A ∈ X such that
♦A ` B. Hence, for C there exists A′ = A such that A′ ∈ X and ♦A′ ` C, i.e. C ∈ ♦X, as
required.

Remark Analogously to the case of the binary connectives, we can define universal unary
operations on the set of filters:
�X = {B | ∀A (B ` �A implies A ∈ X)}
�X = {B | ∀A (B ` �A implies A ∈ X)}
These sets are filters. Indeed, take B ∈ �X and C such that B ` C. We want to prove that
C ∈ X. Take A′ such that C ` �A′. By Transitivity, B ` �A′, hence A′ ∈ X, as desired.

Canonical model Let us add to the canonical model having been constructed two new rela-
tions:

Rc
♦XY iff ♦Y ⊆ X

Rc
�XY iff �Y ⊆ X
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Unary modalities

Truth lemma X  ♦A iff ♦A ∈ X (and analogously for �: X  �A iff �A ∈ X).
proof

(⇒) X  ♦A, i.e. ∃Y such that Rc
♦XY and Y  A. By the definition of Rc

♦XY and IH,
♦Y ⊆ X and A ∈ Y . By the definition of ♦Y , ♦A ∈ ♦Y . Hence ♦A ∈ X, as required.
(⇐) Suppose ♦A ∈ X. We need to prove that X  ♦A, i.e. we should find Y such that
♦Y ⊆ X and Y  A. Assume Y = bAc. Then ♦Y = ♦bAc = b♦Ac ⊆ X since X is a filter and
♦A ∈ X. A ∈ bAc = Y then, by IH, Y  A that realises the second condition. We have proved
X  ♦A. �

Interaction principles Let us turn now to the frame conditions imposed on the relations
Rc

♦ and Rc
� corresponding with the weak distributivity principles (in terms of the existential

modalities ♦, ⊗ and �):

(D1) �A⊗B ` �(A⊗B) (D2) A⊗ �B ` �(A⊗B) (D3) ♦�A ` �♦A.

In terms of universal operations �, �, ⊕ we would have the postulates below. We leave it to the
reader to derive D1′ −D3′ from D1−D3.

(D1′) �(A⊕B) ` �A⊕B (D2′) �(A⊕B) ` A⊕�B (D3′) ��A ` ��A.

For decidable proof search, we put these postulates in rule form (compiling away the use of
transitivity):

�(A⊗B) ` C

�A⊗B ` C
R1

�(A⊗B) ` C

A⊗ �B ` C
R2

�♦A ` B
♦�A ` B

R3

Let us prove that the canonical model with relations for unary modalities satisfies these weak
distributivity principles.

Interaction between � and ⊗ As a representative, we consider the axiom (D1): �A⊗B `
�(A⊗B); the second one is dealt with analogously. The frame constraint for (D1) is:

∀xyzw.(R⊗xyz ∧ R�yw)⇒ ∃y′.(R�xy′ ∧ R⊗y′wz)

In the picture below, vertical dotted line represents Rc
� (with an optional � mark on the line),

vertical solid line Rc
♦ (with an optional ♦ mark).

(†) W

�

Y Z

X

BBBBBBBB

~~~~~~~

(‡) W Z

Y ′

BBBBBBBB

}}}}}}}

X

�

In (†) we depict X  �A⊗B, with W  A and Z  B; in (‡) X  �(A⊗B).
We have to show that in the Henkin model ∀X, Y, Z,W construed as in (†), there is a fresh internal
Y ′ as in (‡). The solution Y ′ := W ⊗̂Z gives us Rc

⊗Y ′WZ since W ⊗̂Z ⊆W ⊗̂Z. We need also
to show that Rc

�XY ′ holds, i.e. �Y ′ ⊆ X. Suppose C ∈ �Y ′. We want to prove that C ∈ X.
By the definition of �Y ′, we have C ′ such that C ′ ∈ Y ′ and �C ′ ` C. By assumption, C ′ ∈ Y ′
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5. LG Completeness: unary modalities

means that C ′ ∈W ⊗̂ Z, i.e. there are C1, C2 such that C1 ∈W and C2 ∈ Z and C1 ⊗C2 ` C ′.
Taking the configuration (†) together with C1 ∈ W , we conclude Y  �C1. Together with the
condition C2 ∈ Z, in (†) it implies that X  �C1 ⊗ C2. By the Truth lemma, this means that
�C1 ⊗C2 ∈ X and since X is a filter and �C1 ⊗C2 ` �(C1 ⊗C2) is an axiom, �(C1 ⊗C2) ∈ X.
We know that C1 ⊗ C2 ` C ′, then �(C1 ⊗ C2) ` �C ′. X is a filter, so �C ′ ∈ X. But we also
have �C ′ ` C, hence C ∈ X, as required.

Interaction between ♦ and � The frame constraint is

∀xyz.(R♦xy ∧ R�yz)⇒ ∃y′.(R�xy′ ∧ R♦y′z)

.

Z Z

(†) Y

�

Y ′

♦

(‡)

X

♦

X

�

We have to show that in the Henkin model for all X, Y, Z depicted as in (†) there is a fresh node
Y ′ connecting the root X to the leaf Z. Assuming Y ′ := ♦Z, we have Rc

♦Y ′Z since ♦Z ⊆ ♦Z.
Now we have to prove that Rc

�XY ′ holds. This means to prove �Y ′ ⊆ X. Take B ∈ �Y ′, i.e.
such that there is B1 ∈ Y ′ and �B1 ` B. Since Y ′ = ♦Z, the fact that B1 ∈ Y ′ actually means
∃B2 such that B2 ∈ Z and ♦B2 ` B1. Taking the configuration (†) together with B2 ∈ Z, we
conclude that Y  �B2. Again from the configuration (†) we see that X  ♦�B2. By the Truth
lemma, ♦�B2 ∈ X. Since X is a filter and ♦�B2 ` �♦B2 is an axiom, we have �♦B2 ∈ X. We
know that ♦B2 ` B1, then, by Monotonicity for �, �♦B2 ` �B1. Hence �B1 ∈ X. But also
�B1 ` B holds, so we have B ∈ X, what we needed to prove.

Remark Suppose that we consider the converses of the weak distributivity principles. Then
we can deal with them analogously to how we have just done.
Soundness can be established by a straightforward induction on the length of derivations in
LG(♦,�, �,�, \,⊗, /, ;,⊕,�). We then arrive at the theorem below for symmetric Lambek-
Grishin calculus without interaction postulates. Completeness extends to the systems with in-
teractions, if one restricts to interpretation on frames respecting the constraints corresponding
to the interaction postulates.

Theorem (Soundness/Completeness) In LG(♦,�, �,�, \,⊗, /, ;,⊕,�),

A ` B is provable iff |= A ` B.

5.4 Linguistic illustration

Usually unary modalities ♦ and � are used to describe linguistic phenomena like extraction. Here
one uses unary modalities in order to mark a particular structure in newly introduced structural
rules of rebracketing.
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Conclusions, future directions

A nice example (discussed in [6]) that can illustrate the need for having these two unary modalities
♦ and � shows as well a strategy of assigning a meet type. It concerns the phenomenon of crossed
dependency in Dutch, as in the phrase ’(dat Jan) boeken (c) wil (a/b) lezen (c\b)’ with the order
of ’object–modal auxiliary–transitive infinitive’. We want to derive a type a that is tensed verb
phrase. Our aim is twofold: to allow the transitive infinitive to communicate with its direct
object across the modal auxiliary; at the same time, we want to rule out the ungrammatical
order (a/b)⊗ (c⊗ (c\b)) which with the indicated types would make a derivable.
We skip all intermediate steps showing how to deal with the type similarity relation, and stick
attention just to the case of making ungrammatical order ’modal auxiliary–object–transitive
infinitive’ underivable. We make use of modal decoration saying that modal auxiliary will have
a type a/♦�b instead of just a/b. Then the type for transitive infinitive will be the following:
((c\b)/C)⊗ (C � (((a/♦�b)\(c\a)) ; C)) where C = ((a/b)\a)⊕ (c\(a ; a)). Now recall that in
LG(♦,�, �,�, \,⊗, /, ;,⊕,�) we have ♦�A ` A.
The unary operators provide fine-grained distinction in the type assignments both within and
across languages. For example, in languages where there are singular and plural articles (like
French, German, Italian) they both are interpreted semantically as (e → t) → t. However, it
is evident they are used in different ways. The unary operators handle this difference in such a
way that it is not visible on the level of the domains of interpretation.
Similarly, the cross-linguistic contrast between the way adjectives may combine with nouns in
Italian and in English does not play any role in the assignment of the meaning to their compo-
sition, but it is relevant for their syntactic assembly in the two languages.
Unfortunately, I haven’t been able so far to find an example showing the need for having all four
unary modalities together.

5.5 Conclusions, future directions

We have established completeness for LG(♦,�, �,�, \,⊗, /, ;,⊕,�), the symmetric Lambek-
Grishin calculus with four unary modalities: a pair of residuated operators, and a dual pair. In
further research, we would like to consider LG would like to compare and combine the extension
with residuated operators with the extension with (dual) Galois connected modalities, studied
by Areces, Bernardi and Moortgat [1]. These Galois connected operators are order-reversing,
and they give rise to new interaction possibilities. Moreover, we would like to study the linguistic
motivation for having these families of unary operators, and for their interaction.
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Type similarity for the Lambek-Grishin calculus

Michael Moortgat and Mati Pentus

Abstract We discuss the relation of type similarity for the type calculus LG: a symmetric
version of the pure logic of residuation with structure-preserving interaction principles. We show
that in LG the ∼ relation can be characterized in terms of an interpretation in the free Abelian
group generated by the type atoms. LG thus achieves the same level of expressivity with respect
to ∼ as the associative/commutative calculus LP without any loss of structural discrimination.

Thanks The research reported on here was partially supported by the Dutch-Russian cooper-
ation program NWO/RFBR, project No. 047.017.01 “Logical models of human and mechanical
reasoning”.

6.1 Background, motivation

In the algebraic remarks at the end of [7], Lambek introduces the notion of type similarity ∼,
i.e. the reflexive, transitive, symmetric closure of the derivability relation.

Definition A ∼ B iff there exists a sequence C1 . . . Cn (1 ≤ n) such that C1 = A, Cn = B and
Ci → Ci+1 or Ci+1 → Ci (1 ≤ i<n).

He proves that A ∼ B if and only if one of the following equivalent statements hold (the so-called
diamond property):

∃C such that A→ C and B → C

∃D such that D → A and D → B

In other words, given a join type C for A and B, one can compute a meet type D, and vice
versa. The solutions for D and C in [7] are given in (6.1). It is shown in [4] that these solutions
are in fact adequate for the pure logic of residuation, i.e. the non-associative calculus NL.

NL : D = (A/((C/C)\C))⊗ ((C/C)\B),
C = (A⊗ (D\D))/(B\(D ⊗ (D\D))) (6.1)
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6. Type similarity for the Lambek-Grishin calculus

calculus interpretation
NL free quasigroup [4]
L free group [9]

LP free Abelian group[9]

Table 6.1: Models for type equivalence

For associative L, [9] has the shorter solution in (6.2). The possibility of rebracketing the types
for D and C is what makes this solution work.

L : D = (A/C)⊗ C ⊗ (C\B), C = (D/A)\D/(B\D) (6.2)

The similarity relation for various calculi in the categorial hierarchy has been characterized in
terms of an algebraic interpretation of the types J·K, in the sense that A ∼ B iff JAK =S JBK
in the relevant algebraic structures S. Table 6.1 gives an overview of the results. For the pure
residuation logic NL, S is the free quasigroup generated by the atomic types, with J·K defined
in the obvious way: JpK = p, JA/BK = JAK/JBK, JB\AK = JBK\JAK, JA ⊗ BK = JAK · JBK.1 In
associative L, type similarity coincides with equality in the free group generated by the atomic
types (free Abelian group for associative/commutative LP). The group interpretation is JpK = p,
JA⊗BK = JAK · JBK, JA/BK = JAK · JBK−1, JB\AK = JBK−1 · JAK.
We see in Table 6.1 that expressivity for ∼ is inversely proportional to structural discrimination:
the structural rules of associativity and commutativity destroy sensitivity for constituent struc-
ture and word order. We want to investigate an alternative strategy to overcome the expressive
limitations of NL based on [5].

6.2 Lambek-Grishin calculus

The generalizations of Lambek calculus studied by Grishin in his 1983 paper all start from a
symmetric version of the type language. In addition to the product ⊗ and left and right division
operations \, /, the language also contains a dual family consisting of a coproduct ⊕ and right
and left difference operations �, ;. The minimal symmetric calculus is defined by the preorder
axioms (6.3), together with the residuation laws of (6.4) and (6.5).

A→ A; from A→ B and B → C infer A→ C (6.3)

A→ C/B iff A⊗B → C iff B → A\C (6.4)

B ; C → A iff C → B ⊕A iff C �A→ B (6.5)

This minimal system can be extended in two directions. On the one hand, there are the familiar
same-sort associativity and/or commutativity options that give rise to (symmetric versions of)
L and LP. We do not consider these options, since they are not structure-preserving. On the
other hand, Grishin introduces interaction principles for the communication between the ⊗ and
⊕ families. It is this second strategy that we will explore here. With LG we designate the type
calculus that extends the (6.3), (6.4), (6.5) system with the interaction principles given in (6.6).

(A ; B)⊗ C → A ; (B ⊗ C) C ⊗ (B �A)→ (C ⊗B)�A
C ⊗ (A ; B)→ A ; (C ⊗B) (B �A)⊗ C → (B ⊗ C)�A

(6.6)

1Recall that a quasigroups is a set equipped with operations /, ·, \ satisfying the equations (x/y) · y = x,
y · (y\x) = x, (x · y)/y = x, y\(y · x) = x.
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The above group of principles (Class IV in Grishin’s original terminology) represents one particu-
lar choice for ⊗/⊕ interaction. The alternative choice (Grishin’s Class I) consists of the converses
of (6.6), obtained by turning around the turnstile. Linguistic investigation of the Lambek-Grishin
approach has provided solid support for the Class IV interactions, cf. the analysis of scope con-
strual in [1]. Linguistic motivation for Class I interaction so far is less clear.
For decidable proof search, we are interested in an axiomatization which has transitivity as an
admissible rule. Such an axiomatization for LG can be given in terms of the identity axiom
1A : A→ A together with the residuation principles (6.7), the Grishin axioms in rule form (6.8),
and the monotonicity rules of (6.9). We give these rules with combinator proof terms, so that in
the remainder we can succinctly refer to derivations by their combinator. The residuation rules
are invertible; we write �′,�′,�′,�′ for the reverse direction.

f : A⊗B → C

�f : B → A\C
f : C → A⊕B

�f : A ; C → B

f : A⊗B → C

�f : A→ C/B

f : C → A⊕B

�f : C �B → A

(6.7)

f : A ; (B ⊗ C)→ D

<f : (A ; B)⊗ C → D

f : (A⊗B)� C → D

=f : A⊗ (B � C)→ D

f : B ; (A⊗ C)→ D

<?f : A⊗ (B ; C)→ D

f : (A⊗ C)�B → D

=?f : (A�B)⊗ C → D

(6.8)

f : A→ B g : C → D

f ⊗ g : A⊗ C → B ⊗D

f : A→ B g : C → D

f ⊕ g : A⊕ C → B ⊕D

f : A→ B g : C → D

f/g : A/D → B/C

f : A→ B g : C → D

f � g : A�D → B � C

f : A→ B g : C → D

g\f : D\A→ C\B
f : A→ B g : C → D

g ; f : D ; A→ C ; B

(6.9)

Admissibility of the transitivity rule for this axiomatization is established in [8]. We refer the
reader to [6] for a proof of completeness of LG with respect to ternary relational semantics,
and to [1] for a continuation-passing-style Curry-Howard semantics of LG derivations and an
analysis of scope construal.

6.3 Type similarity for LG

Let us turn to the characterization of type similarity for LG. In §6.3.1 we establish the diamond
property and prove some useful lemmas. In §6.3.2 we discuss similarity for formulas falling within
the pure ⊗, /, \ (or ⊕,�,;) fragments. In §6.3.3 we then consider the full vocabulary.

6.3.1 Preliminaries

Let us first consider the diamond property for LG . Whereas NL has a solution of length 7 for
the meet and join types, Lemma 6.3.1 shows that LG has a length 5 solution, as was the case
for L. The LG solution relies on the Grishin interaction principles.
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Lemma 6.3.1 In LG, the diamond property is established with meet D = (A/C)⊗(C�(B;C))
and join C = (A�D)⊕ (D/(B\D)).

Proof Given f : B → C and g : A → C we have �′(1A/ � �′(f ; 1C)) for D → A and
= � �′(�′(1B ; g)/1C) for D → B. The proofs in tree format are given below.

A → A

B → C C → C

(C ; C)→ (B ; C)
;

C → (C ⊕ (B ; C)) �′

(C � (B ; C))→ C
�

(A/C)→ (A/(C � (B ; C)))
/

((A/C)⊗ (C � (B ; C)))→ A
�′

B → B A → C

(B ; A)→ (B ; C)
;

A → (B ⊕ (B ; C)) �′
C → C

(A/C)→ ((B ⊕ (B ; C))/C)
/

((A/C)⊗ C)→ (B ⊕ (B ; C)) �′

(((A/C)⊗ C)� (B ; C))→ B
�

((A/C)⊗ (C � (B ; C)))→ B
=

Given f ′ : D → B and g′ : D → A, we have �′(1A � � �′ (f ′\1D)) for A → C and �′ � < �
�′(�′(1B\g′)� 1D) for B → C. In tree format:

A → A

D → B D → D

(B\D)→ (D\D)
\

(D ⊗ (B\D))→ D
�′

D → (D/(B\D))
�

(A � (D/(B\D)))→ (A �D)
�

A → ((A �D)⊕ (D/(B\D))) �′

B → B D → A

(B\D)→ (B\A)
\

(B ⊗ (B\D))→ A
�′

D → D

((B ⊗ (B\D))�D)→ (A �D)
�

(B ⊗ (B\D))→ ((A �D)⊕D) �′

((A �D) ; (B ⊗ (B\D)))→ D
�

(((A �D) ; B)⊗ (B\D))→ D
<

((A �D) ; B)→ (D/(B\D))
�

B → ((A �D)⊕ (D/(B\D))) �′

�

We consider some further properties of type similarity which, in L, would be dependent on ⊗
associativity. In the absence of associativity, these properties obtain in LG by virtue of the
Grishin interactions.

Lemma 6.3.2 Rotation. In LG, we have (A\B)/C ∼ A\(B/C) for arbitrary A,B,C.

Proof A join type for (A\B)/C and A\(B/C) is (A\B)⊕ ((B ;B)/C) as shown by the deriva-
tions in Figure 6.1

�

Next, in L, for arbitrary types C, D we have C\C ∼ D/D. A join type for L is C\((C⊗D)/D),
as shown in [9]. In LG we have a solution for neutral types which is derivable from the L solution.

Lemma 6.3.3 Neutrals. In LG, for arbitrary C,D we have C\C ∼ D/D.

Proof A join type is (C\((C ⊗D)�D))⊕ (D/D) as shown in Figure 6.2

78



Type similarity for LG

B ` B

A ` A B ` B

(A\B) ` (A\B)
\

C ` C

((A\B)/C) ` ((A\B)/C)
/

(((A\B)/C)⊗ C) ` (A\B)
�′

(A ⊗ (((A\B)/C)⊗ C)) ` B
�′

(B ; (A ⊗ (((A\B)/C)⊗ C))) ` (B ; B)
;

(A ⊗ (((A\B)/C)⊗ C)) ` (B ⊕ (B ; B))
�′

((A ⊗ (((A\B)/C)⊗ C))� (B ; B)) ` B
�

(A ⊗ ((((A\B)/C)⊗ C)� (B ; B))) ` B
=

((((A\B)/C)⊗ C)� (B ; B)) ` (A\B)
�

(((A\B)/C)⊗ C) ` ((A\B)⊕ (B ; B))
�′

((A\B) ; (((A\B)/C)⊗ C)) ` (B ; B)
�

(((A\B) ; ((A\B)/C))⊗ C) ` (B ; B)
<

((A\B) ; ((A\B)/C)) ` ((B ; B)/C)
�

((A\B)/C) ` ((A\B)⊕ ((B ; B)/C))
�′

B ` B

A ` A

B ` B C ` C

(B/C) ` (B/C)
/

(A\(B/C)) ` (A\(B/C))
\

(A ⊗ (A\(B/C))) ` (B/C)
�′

((A ⊗ (A\(B/C)))⊗ C) ` B
�′

(B ; ((A ⊗ (A\(B/C)))⊗ C)) ` (B ; B)
;

((B ; (A ⊗ (A\(B/C))))⊗ C) ` (B ; B)
<

(B ; (A ⊗ (A\(B/C)))) ` ((B ; B)/C)
�

(A ⊗ (A\(B/C))) ` (B ⊕ ((B ; B)/C))
�′

((A ⊗ (A\(B/C)))� ((B ; B)/C)) ` B
�

(A ⊗ ((A\(B/C))� ((B ; B)/C))) ` B
=

((A\(B/C))� ((B ; B)/C)) ` (A\B)
�

(A\(B/C)) ` ((A\B)⊕ ((B ; B)/C))
�′

Figure 6.1: Join for (A\B)/C and A\(B/C).

�

The lemma below may be more surprising, and shows that LG has the kind of expressivity we
expect for LP.

Lemma 6.3.4 Symmetry. For arbitrary LG types A, B: B\A ∼ A/B.

Proof This time, we provide a meet type, i.e. a type X such that X → B\A and X → A/B,
which by residuation means

B ⊗X → A and X ⊗B → A

Let us put X := Y � Z and solve for

B ⊗ (Y � Z)→ A and (Y � Z)⊗B → A

which by Grishin mixed associativity or commutativity follows from

B ⊗ Y → A⊕ Z and Y ⊗B → A⊕ Z

We have a solution with Z := (A ; B) and Y the meet for C the join of B\B and B/B, i.e.
Y := ((b/b)/C)⊗ (C � ((b\b) ; C)), where C is ((b\((b ⊗ b)� b))⊕ (b/b))).

�

6.3.2 The ⊗ and ⊕ fragments

We first give a characterization of LG similarity for pure ⊗, \, / formulas (and by arrow reversal,
pure ⊕,;,� formulas).
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6. Type similarity for the Lambek-Grishin calculus

C → C C → C

(C\C) → (C\C)
\

(C ⊗ (C\C)) → C
�′

D → D

((C ⊗ (C\C))⊗D) → (C ⊗D)
⊗

D → D

(((C ⊗ (C\C))⊗D)�D) → ((C ⊗D)�D)
�

((C ⊗ (C\C))⊗D) → (((C ⊗D)�D)⊕D)
�′

(((C ⊗D)�D) ; ((C ⊗ (C\C))⊗D)) → D
�

((((C ⊗D)�D) ; (C ⊗ (C\C)))⊗D) → D
<

(((C ⊗D)�D) ; (C ⊗ (C\C))) → (D/D)
�

(C ⊗ (C\C)) → (((C ⊗D)�D)⊕ (D/D))
�′

((C ⊗ (C\C))� (D/D)) → ((C ⊗D)�D)
�

(C ⊗ ((C\C)� (D/D))) → ((C ⊗D)�D)
=

((C\C)� (D/D)) → (C\((C ⊗D)�D))
�

(C\C) → ((C\((C ⊗D)�D))⊕ (D/D))
�′

C → C

D → D D → D

(D/D) → (D/D)
/

((D/D)⊗D) → D
�′

(C ⊗ ((D/D)⊗D)) → (C ⊗D)
⊗

D → D

((C ⊗ ((D/D)⊗D))�D) → ((C ⊗D)�D)
�

(C ⊗ (((D/D)⊗D)�D)) → ((C ⊗D)�D)
=

(((D/D)⊗D)�D) → (C\((C ⊗D)�D))
�

((D/D)⊗D) → ((C\((C ⊗D)�D))⊕D)
�′

((C\((C ⊗D)�D)) ; ((D/D)⊗D)) → D
�

(((C\((C ⊗D)�D)) ; (D/D))⊗D) → D
<

((C\((C ⊗D)�D)) ; (D/D)) → (D/D)
�

(D/D) → ((C\((C ⊗D)�D))⊕ (D/D))
�′

Figure 6.2: Join for C\C and D/D.

Theorem 6.3.5 Let A and B belong to Frm(⊗, \, /). Then A ∼ B in LG iff JAK =FAG JBK,
where =FAG is equality in the free Abelian group generated by the atomic types.

Proof Recall the proof in [9] for the free group characterization of type equivalence in L. One
constructs a group G∼ on the [·]∼ equivalence classes with respect to the ∼ relation, defining
1∼, the unit of G∼, as 1∼ = [A/A]∼ = [B\B]∼, and

[C]∼ · [D]∼ = [C ⊗D]∼, [C]−1
∼ = [(C\C)/C]∼.

One then extends the mapping JpK 7→ [p]∼ from the generators of FG into G∼ into a homomor-
phism h, showing that for any type C, h(JCK) = [C]∼. From this it follows that if JAK =FG JBK,
then h(JAK) = h(JBK), i.e. [A]∼ = [B]∼, hence A ∼ B.
We extend this proof to the situation of LG . We have to show that G∼ satisfies the properties
of an Abelian group.
(Identity) As in L.
(Commutativity) We have to show that for all A,B, [A]∼ · [B]∼ = [B]∼ · [A]∼, i.e. [A⊗B]∼ =
[B ⊗ A]∼. We have established the existence of a meet type X for (A ⊗ B)/B and B\(A ⊗ B)
in Lemma 6.3.4, showing that (A ⊗ B)/B ∼ B\(A ⊗ B). Since A → (A ⊗ B)/B, we also have
A ∼ (A ⊗ B)/B. By the diamond property, we can complete the picture with solutions for Y
and Z.
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Y

%%KKKKKKKKKKK

yysssssssssss

A

$$JJJJJJJJJJ X

%%JJJJJJJJJJ

yytttttttttt

(A⊗B)/B

%%JJJJJJJJJJ
B\(A⊗B)

yytttttttttt

Z

We now have A ∼ B\(A⊗B), hence B ⊗A ∼ B ⊗ (B\(A⊗B)), and since B ⊗ (B\(A⊗B))→
(A⊗B) also B ⊗A ∼ A⊗B as desired.
(Inverse) [C]−1

∼ · [C]∼ = 1∼ directly follows from the fact that ((C\C)/C) ⊗ C → C\C as in
L. Now [C]∼ · [C]−1

∼ = 1∼ follows from commutativity.
(Associativity) We have to show that for all A,B, C,

([A]∼ · [B]∼) · [C]∼ = [A]∼ · ([B]∼ · [C]∼)

which by the definition of the group product means [(A ⊗ B) ⊗ C]∼ = [A ⊗ (B ⊗ C)]∼. We
follow the same strategy as for the (Commutativity) property. We have D\E ∼ (D\F )/(E\F )
since D\E → D\(F/(E\F )) by lifting, and D\(F/(E\F )) ∼ (D\F )/(E\F ) by rotation (Lemma
6.3.2). Let D := A, E := (A ⊗ B), and F := ((A ⊗ B) ⊗ C). From the fact that B → D\E,
i.e. B → A\(A⊗B), we then conclude that also

B ∼ (D\F )/(E\F ) i.e. B ∼ (A\((A⊗B)⊗ C))/((A⊗B)\((A⊗B)⊗ C))

where the existence of meet and join types X, Y, Z in the picture below is guaranteed by the
diamond property.

Y

%%KKKKKKKKKKK

yysssssssssss

B

$$JJJJJJJJJJ X

&&LLLLLLLLLLL

zztttttttttt

A\(A⊗B)

%%JJJJJJJJJJ
(A\F )/(E\F )

xxrrrrrrrrrrr

Z

We then have (with F := ((A⊗B)⊗ C))

A⊗ (B ⊗ C) ∼ A⊗ (((A\F )/(E\F ))⊗ C)

and since C → E\F , i.e. C → (A ⊗ B)\((A ⊗ B) ⊗ C), also A ⊗ (((A\F )/(E\F )) ⊗ C) → F ,
which establishes the fact that A⊗ (B ⊗ C) ∼ (A⊗B)⊗ C as desired.

�
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6. Type similarity for the Lambek-Grishin calculus

The above characterization applies to the Frm(/,⊗, \) fragment. We can set up a similar inter-
pretation for formulas from the Frm(�,⊕,;) fragment.

[[[p]]] = p
[[[A⊕B]]] = [[[A]]] · [[[B]]]
[[[A�B]]] = [[[A]]] · [[[B]]]−1

[[[B ; B]]] = [[[B]]]−1 · [[[A]]]

By arrow reversal, a characterization in terms of free Abelian group equality carries over directly
to the formulas from the Frm(�,⊕,;) fragment.

Theorem 6.3.6 For A,B from Frm(⊕,�,;), in LG we have A ∼ B iff [[[A]]] =FAG [[[B]]].

6.3.3 The full language

We turn now to the full language Frm(/,⊗, \,�,⊕,;). On the one hand, we want to avoid
collapse of the vocabulary, so we shouldn’t have A/B ∼ A � B etc. On the other hand, we
should have (B � C) ; A ∼ C/(A\B) since (B � C) ; A→ C/(A\B).
It is well known that equality in the Abelian group can be characterized in terms of literal counts,
which are defined as follows.

|p|p = 1, |q|p = 0 if p 6= q
|A⊗B|p = |A⊕B|p = |A|p + |B|p
|A/B|p = |B\A|p = |A|p − |B|p
|A�B|p = |B ; A|p = |A|p − |B|p

(6.10)

For example, if A and B belong to Frm(/,⊗, \), then the equality JAK =FAG JBK holds if and
only if |A|p = |B|p for all p.
It is natural to bring into play also the operator count, with |p|⊗ = |p|⊕ = 0 and

|A⊗B|⊗ = |A|⊗ + |B|⊗ + 1
|A⊕B|⊗ = |A|⊗ + |B|⊗
|A/B|⊗ = |A|⊗ − |B|⊗ − 1
|B\A|⊗ = |A|⊗ − |B|⊗ − 1
|A�B|⊗ = |A|⊗ − |B|⊗
|B ; A|⊗ = |A|⊗ − |B|⊗

|A⊗B|⊕ = |A|⊕ + |B|⊕
|A⊕B|⊕ = |A|⊕ + |B|⊕ + 1
|A/B|⊕ = |A|⊕ − |B|⊕
|B\A|⊕ = |A|⊕ − |B|⊕
|A�B|⊕ = |A|⊕ − |B|⊕ − 1
|B ; A|⊕ = |A|⊕ − |B|⊕ − 1

(6.11)

We have the invariant that if A → B, then |A|⊗ = |B|⊗ and |A|⊕ = |B|⊕, since the operator
balance holds for literals, and the inference rules preserve it (monotonicity, residuation shifting
and the Grishin rules).
Operator balance fails for a/b vs a� b etc, and holds for formulas such as (b� c) ; a ∼ c/(a\b),
a/b ∼ (a� c)/(b� c).
It turns out that the literal counts and the two operator counts are sufficient to characterize type
similarity in the full language. Moreover, one of the operator counts can be dropped, since the
equalities |A|⊗ = |B|⊗ and |A|⊕ = |B|⊕ are equivalent provided that |A|p = |B|p for all p. This
equivalence can be established by a straightforward proof of the equality

∑
p |A|p−|A|⊗−|A|⊕ = 1

by induction on the structure of A.
Now let us define the group interpretation for Frm(/,⊗, \,�,⊕,;). We shall use the free Abelian
group generated by all primitive types and one additional element, denoted by �. The definition
is compatible with that for the Frm(/,⊗, \) fragment, but not with that for the Frm(�,⊕,;)
fragment, since we incorporate also the operator count | · |⊗ into the free Abelian group.
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Type similarity for LG

Definition LG group interpretation for Frm(/,⊗, \,�,⊕,;).

JpK = p
JA⊗BK = JAK · JBK

JA/BK = JAK · JBK−1

JB\AK = JBK−1 · JAK
JA⊕BK = JAK ·�−1 · JBK
JA�BK = JAK ·� · JBK−1

JB ; AK = JBK−1 ·� · JAK

Lemma 6.3.7 For any A, B, and C we have

(A⊕B)⊗ C ∼ A⊕ (B ⊗ C) and (A⊕B)⊗ C ∼ (C ⊕B)⊗A.

Proof We already know that A ⊕ B ∼ ((A ; A) � A) ; B. The first claim of the lemma is
established by the following:
(A⊕B)⊗ C ∼ (((A ; A)�A) ; B)⊗ C ∼ ((A ; A)�A) ; (B ⊗ C) ∼ A⊕ (B ⊗ C).
It remains to prove the second claim:
(A⊕B)⊗ C ∼ (B ⊕A)⊗ C ∼ B ⊕ (A⊗ C) ∼ B ⊕ (C ⊗A) ∼ (B ⊕ C)⊗A ∼ (C ⊕B)⊗A.

�

Theorem 6.3.8 Let A, B belong to Frm(/,⊗, \,�,⊕,;). Then in LG

A ∼ B iff JAK =FAG JBK.

Proof We extend the proof that was given for the Frm(/,⊗, \) case. On the equivalence classes
of Frm(/,⊗, \,�,⊕,;), a group is constructed in exactly the same way, and the verification of
the Abelian group axioms remains the same.
We consider the following mapping from the generators of the free Abelian group into the group
of equivalence classes of types:

p 7→ [p]∼, � 7→ [p1 � p1]∼.

We extend this mapping into a group homomorphism h. It remains to show that h(JCK) = [C]∼
for any type C. This is done by induction on the structure of C. The induction base is provided
by the construction. The induction step consists of six cases, three of which are exactly the same
as in [9]. In what follows, we shall sometimes denote p1 � p1 by J .
For the case C = A⊕B we need to establish that

A⊕B ∼ (A⊗ ((J\J)/J))⊗B.

From the fragment Frm(/,⊗, \) we know that A⊗ ((J\J)/J) ∼ A/J , whence

(A⊗ ((J\J)/J))⊗B ∼ (A/J)⊗B ∼ (A⊗B)/J.

It remains to prove that
A⊕B ∼ (A⊗B)/J,

which is equivalent to
(A⊕B)⊗ J ∼ A⊗B.
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6. Type similarity for the Lambek-Grishin calculus

We prove the latter similarity as follows:

(A⊕B)⊗ (p1 � p1) ∼ ((p1 � p1)⊕B)⊗A ∼ B ⊗A ∼ A⊗B.

Here the first similarity follows from the lemma, the second one is obtained from the Frm(�,⊕,;)
fragment, and the third one has already been proved for the Frm(/,⊗, \) fragment.
For the case C = A�B we need to establish that

A�B ∼ (A⊗ J)⊗ ((B\B)/B).

From the fragment Frm(/,⊗, \) we know that

(A⊗ J)⊗ ((B\B)/B) ∼ (A⊗ J)/B.

It remains to prove that
A�B ∼ (A⊗ J)/B,

which is equivalent to
(A�B)⊗B ∼ A⊗ J.

We prove the latter similarity as follows:

(A�B)⊗B ∼ (A⊗B)�B ∼ (B ⊗A)�B ∼ (B �B)⊗A ∼ J ⊗A ∼ A⊗ J.

Now the case C = B ; A is obvious, since B ; A ∼ A�B and

(((B\B)/B)⊗ J)⊗A ∼ (A⊗ J)⊗ ((B\B)/B).

�

6.4 Discussion

To overcome the expressive limitations of NL different options present themselves. A well
explored strategy is to add structural rules for the composition operations, either globally, or
controlled by structural modalities. As an alternative, we have lifted the intuitionistic restriction
by considering a residuated family ⊕,;,� which is dual to the usual ⊗, /, \ family. In this
symmetric setting, one can keep the composition operations free of structural rules, and obtain
extra expressivity purely via the interactions governing the dual families.
The resulting calculus LG is only one of the possible symmetric generalizations of the Lambek
calculus considered in [5]. An alternative generalization would replace the four interaction prin-
ciples (6.6) by their converses. Or one could consider the calculus that results from combining
(6.6) and their converses. We have preferred here to study the simplest extension: our results
show that already with this extension one can obtain LP expressivity with respect to type simi-
larity. We leave the investigation of the converse and/or combined Grishin principles for another
occasion.
Discussion of the potential linguistic applications of the ∼ relation is beyond the scope of this
paper. We sketch one possibility. It is well-known that complement extraction is beyond the
reach of NL: the object position of ‘dedicated’ (((np\s)/pp)/np) in ‘book that Lewis dedicated

to Alice’ is invisible for the relative pronoun ‘that’ of type (n\n)/(s/np). The object would be
accessible from a type-assignment (np\(s/np))/pp to the verb, with the object promoted to the
external argument role. In the pure residuation logic, there is no derivability relation between
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((np\s)/pp)/np and (np\(s/np))/pp — and indeed there shouldn’t be if one wants to preserve
word order. But in LG we have ((np\s)/pp)/np ∼ (np\(s/np))/pp, which means there is a
meet type for these two types. Assigning this meet type lexically creates a lexical entry that
can non-deterministically adapt to its context and behave either as a normal complement-taking
verb, or as the head in an extraction environment.
An obvious topic for further research suggested by the results of this paper would be the genera-
tive capacity and computational complexity of LG and its relatives. The pure residuation logic
NL and its symmetric extension are known to have a polynomial recognition problem [3, 2].
The simplest structural extension (L) is NP-complete [10]. The complexity effects of adding a
package of Grishin interactions to the symmetric pure residuation logic are unknown.
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