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Abstract

Categorial grammars in the tradition of Lambek [17, 18] are asymmetric: sequent statements
are of the form Γ ⇒ A, where the succedent is a single formula A, the antecedent a structured
configuration of formulas A1, . . . , An. The absence of structural context in the succedent makes
the analysis of a number of phenomena in natural language semantics problematic. A case in point
is scope construal: the different possibilities to build an interpretation for sentences containing
generalized quantifiers and related expressions. In this paper, we explore a symmetric version
of categorial grammar, based on work by Grishin [14]. In addition to the Lambek product, left
and right division, we consider a dual family of type-forming operations: coproduct, left and
right difference. Communication between the two families is established by means of structure-
preserving distributivity principles. We call the resulting system LG. We present a Curry-Howard
interpretation for LG(/, \,;,�) derivations, based on Curien and Herbelin’s λµµ̃ calculus [9]. We
discuss continuation-passing-style (CPS) translations mapping LG derivations to proofs/terms of
Intuitionistic Multiplicative Linear Logic — the categorial system LP which serves as the logic
for natural language meaning assembly. We show how LG, thus interpreted, associates sentences
with quantifier phrases with the appropriate range of meanings, thus overcoming the expressive
limitations of asymmetric categorial grammars in this area.

1. Background

In two groundbreaking papers written some fifty years ago [17, 18], Jim Lambek initiated the
‘parsing-as-deduction’ style of linguistic analysis by setting himself the task of finding “an effective
rule (or algorithm) for distinguishing sentences from nonsentences” which would work “not only
for the formal languages of interest to the mathematical logician, but also for natural languages”.
The method consists in assigning types to the words of the language under investigation “in such
a way that the grammatical correctness of a sentence can be determined by a computation on
these types”. The vocabulary of the type system has a small set of atomic types, and operations
of multiplication, left and right division.

A,B ::= p atoms: s (sentence), np (noun phrase), . . .

| A⊗B | A\B | B/A product, left division, right division
(1)

For computations on these types, Lambek proposes a Syntactic Calculus. The minimal version
of this calculus is known as NL. It is presented in the [18] paper, and consists of the preorder laws
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for derivability (A ` A plus transitivity: from A ` B and B ` C, derive A ` C) together with
the residuation laws of (2) establishing the relation between the product operation and the two
divisions.

A ` C/B iff A⊗B ` C iff B ` A\C residuation laws (2)

To obtain a decision algorithm for sentencehood, Lambek reformulates the Syntactic Calculus in
the Gentzen sequent format of Fig 1, obtaining what is in effect a logic without any structural rules:
grammatical material cannot be duplicated or erased without affecting well-formedness (absence
of Contraction and Weakening); moreover, structural rules affecting word order and constituent
structure (Commutativity and Associativity) are unavailable. Sequents are of the form Γ⇒ A with
A a formula from (1) and Γ a (non-empty) tree with formulas at the yield; ◦ is the tree-building
operation corresponding to the product connective ⊗. Γ[∆] stands for an antecedent tree structure
Γ with a distinguished substructure ∆. The Cut rule can be shown to be admissible; backwards
chaining cut-free proof search then immediately produces a decision procedure for theoremhood.

A⇒ A
(Ax)

∆⇒ A Γ[A]⇒ B

Γ[∆]⇒ B
(Cut)

∆⇒ A Γ[B]⇒ C

Γ[∆ ◦ (A\B)]⇒ C
(\L) A ◦ Γ⇒ B

Γ⇒ A\B
(\R)

∆⇒ A Γ[B]⇒ C

Γ[(B/A) ◦∆]⇒ C
(/L) Γ ◦A⇒ B

Γ⇒ B/A
(/R)

Γ[A ◦B]⇒ C

Γ[A⊗B]⇒ C
(⊗L) Γ⇒ A ∆⇒ B

Γ ◦∆⇒ A⊗B (⊗R)

Figure 1: Sequent presentation of NL, the Syntactic Calculus of Lambek (1961).

From the minimal system NL a number of extensions can be obtained by relaxing the sensitivity
for word order and/or constituent structure: the system L [17] results from the addition of a
structural rule of Associativity; the Lambek-Van Benthem calculus LP [29] adds both Associativity
and Commutativity. The latter system, in retrospect, can be seen to coincide with Intuitionistic
Multiplicative Linear Logic (without units).

Semantics for NL and its relatives can be studied from a variety of perspectives. In this
paper, we look at a structural and a computational interpretation. For the structural semantics
we adopt the approach originally developed within the context of relevance logic. Models, in this
interpretation, are based on frames (W,R⊗), where W is the set of ‘grammatical resources’, and
R⊗ a ternary relation of grammatical composition — the fusion relation of relevance logic, or the
‘Merge’ relation in the vocabulary of generative grammar. The valuation V assigns subsets of W
to the type formulas, respecting the truth conditions of (3) for complex formulas.

x  A⊗B iff ∃yz.R⊗xyz and y  A and z  B
y  C/B iff ∀xz.(R⊗xyz and z  B) implies x  C
z  A\C iff ∀xy.(R⊗xyz and y  A) implies x  C

(3)

The basic soundness/completeness result [11] then states that A ` B is provable in NL iff V (A) ⊆
V (B) for all frames F and valuations V . The theorems of NL, in this sense, capture grammatical
invariants: principles of grammatical organization that hold no matter what the properties of the
Merge relation are. For the extensions with Associativity and/or Commutativity, frame constraints
corresponding to these structural rules restrict the interpretation of the Merge relation.

The second type of interpretation is a computational one, along the lines of the Curry-Howard
formulas-as-types program. Under this interpretation, originally introduced in [29], categorial
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derivations are associated with λ terms, representing instructions for meaning assembly. The
problem of parsing a sequence of words w1, . . . , wn with lexical types A1, . . . , An as a phrase of
type B is now represented by sequents of the form of (4), where the yield of the antecedent
structure Γ are formulas Ai labeled with distinct variables xi. The derivation showing that Γ is a
well-formed structure of type B is associated with a lambda term t: a program with parameters
x1, . . . , xn indicating how the meaning of the conclusion B is assembled out of the meanings of
the constituent parts Ai.

w1 · · · wn
...

...
x1 : A1 · · · xn : An ⇒ t : B︸ ︷︷ ︸

Γ

(4)

In [29], meaning composition is studied from the perspective of LP: the class of terms λLP in
one-to-one correspondence with the derivations in this logic are the linear λ terms, with exactly
the antecedent xi as free variables. For the syntactically more sensitive systems (N)L, the in-
terpretation takes the form of a translation (·)′ mapping the source logic types and proofs to
types/proofs of the target logic LP. At the type level, we stipulate p′ = p̃ for the atoms of the
source logic, for example np′ = e and s′ = t, with e and t target logic types denoting individuals
and truth values respectively. For complex types (A/B)′ = (B\A)′ = B′ → A′,1 where → is the
non-directional linear implication of LP. At the level of proofs, (N)L sequents A1, . . . , An ⇒ B
have their antecedent formulas Ai labeled with distinct variables xi of type A′i, the image in LP
of the source logic types Ai. Out of these variables, an λLP term t of type B′ is computed by
means of the rules in (5). We give the (\L) and (\R) rules; the (/L) and (/R) rules have the same
term annotation since (A/B)′ = (B\A)′.

x : A⇒ x : A
(Ax)

∆⇒ t : A Γ[x : A]⇒ u : B

Γ[∆]⇒ u[x := t] : B
(Cut)

∆⇒ t : A Γ[x : B]⇒ u : C

Γ[∆ ◦ y : (A\B)]⇒ u[x := (y t)] : C
(\L) x : A ◦ Γ⇒ t : B

Γ⇒ λx.t : A\B
(\R)

(5)

Expressive limitations. The semantic expressivity of (N)L is inversely proportional to the syn-
tactic discrimination of these systems, in the sense that NL′ ⊂ L′ ⊂ λLP: dropping Associativity
and/or Commutativity means that certain recipes for meaning assembly that are available at the
level of λLP can no longer be obtained as the (·)′ image of (N)L derivations. The expressive
limitations of (N)L make themselves clearly felt in the area of natural language semantics that
deals with Quantifier Phrases (QPs) — phrases such as ‘nobody’, ‘every linguist’, ‘a logician’, ‘a
typo’ in the examples below. Model-theoretically, these phrases denote sets of sets of individuals,
the interpretation for type (e→ t)→ t in the target logic. Proof-theoretically, they behave as in
(7).

a Nobody stayed.
b Every linguist met a logician (in Amsterdam).
c Jim saw that a typo occurred on every page.

(6)

∆[x : np]⇒ t : s1 Γ[y : s2]⇒ u : s3

Γ[∆[z : QP ]]⇒ u[y := (z λx.t)] : s3 (7)

We can paraphrase the inference in (7) as follows. A QP acts locally as a simple np within an
enveloping sentential context ∆, the scope domain of the QP. In (7) we label the scope domain as

1We restrict our attention to the interpretation for the division types /, \ in this paper.
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s1, to distinguish it from s2. The recipe associated with s2 is the result of applying z, the parameter
for the QP meaning, to a term denoting (the characteristic function of) a set of individuals. This
term is obtained by abstracting over the np hypothesis in the scope domain s1.

Matching rule (7) with the examples can be non-deterministic: in (b) and (c), there are
different choices for identifying the scope domain ∆, maybe within a broader context Γ, lead-
ing to scope ambiguities in the interpretation. For (b), do we have to check whether {x |
every linguist met x} ∈ Ja logicianK, or whether {x | x met a logician} ∈ Jevery linguistK? For
(c), does its interpretation involve a check whether {x | x occurred on every page} ∈ Jan errorK,
or whether {x | Jim saw x occurred on every page} ∈ Jan errorK?

The challenge is to find a type for QP in (N)L that would behave as indicated in (7). The
solution s2/(np\s1) restricts the QP to occur in subject positions, italicized in (6), and doesn’t
cover the occurrences in small caps. In NL, there is no type for the small caps occurrences such
that its (·)′ image would be (e→ t)→ t. In L, these occurrences would be covered by (s1/np)\s2,
but that type allows a QP to take scope only when it occupies the right periphery of its domain.
Similarly, s2/(np\s1) is restricted to take scope from a left-peripheral position. That means that
L cannot associate (c) with a reading where ‘a typo’ has scope at the main clause level (‘there
is a typo x such that Jim thinks x occurred on every page’), and that in (b), ‘a logician’ cannot
outscope the adverb ‘in Amsterdam’.

Summarizing the above, we identify the following problems in associating (N)L derivations
involving QPs with λLP terms coding their meaning.

Type uniformity In (N)L, different syntactic occurrences of QPs require different type assign-
ments. Instead, we would like to have a single type assignment in line with the uniform
semantic contribution of the QPs.

Scope flexibility In (N)L, the possibilities for scope construal in environments with multiple
QPs are limited by peripherality conditions. Instead, we would like to realize the derivational
non-determinism of (7) in full generality.

What we say here about the behavior of QPs applies to a wider range of phenomena known
in the linguistic literature as in situ binding; in general, these phenomena involve the binding
of an A-type hypothesis in a domain of type B, producing a C-type result. In the type-logical
literature, various analyses of in situ phenomena have been proposed that address the expressivity
issues discussed above. Solutions in the tradition of Multimodal TLG [24, 4, 25] postulate a richer
inventory of syntactic operations to put phrases together, with wrapping operations in addition to
the usual concatenation. Flexible Montague Grammar [15] relaxes the mapping from the syntactic
source logic to LP. In this approach (·)′ is modeled as a relation instead of a function; a source
logic type is associated with a set of LP types, related by type-shifting postulates.

The approach we will develop below differs from the above in sticking to the minimal categorial
logic: the pure logic of residuation NL. We overcome its expressive limitations by dropping the
restriction that the succedent must consist of a single formula and moving to LG: a symmetric
system where the Lambek connectives (product, left and right division) coexist with a dual family:
coproduct (⊕), right (�) and left (;) difference. The communication between these two families
is expressed in terms of the distributivity principles of [14].

Outline of the paper. Figure 2 schematically presents the outline of the sections that follow. In
§2 we present the syntax and relational semantics of LG and discuss its symmetries at the level
of types and proofs. In §3.1 we present a term language λLG which is the Curry-Howard image
of LG derivations. In §3.2 we then study the mapping from λLG to our target logic for meaning
composition λLP. The mapping takes the form of a continuation-passing-style (CPS) translation,
which can be executed with a call-by-value d·e or a call-by-name b·c strategy, related by duality. In
§4 we turn to the discussion of scope construal. We show how the interpretation of lexical constants
with simple NL types can be systematically lifted to the CPS level in terms of mappings V·W,T·U.
We propose (s� s) ; np as LG type assignment for QPs and show how it solves the problems we
identified above with scope construal in the asymmetric systems (N)L. In the concluding section
§5, we point to some directions for future work.
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λLG
cbv //

cbn

��

dτe : dAe

V·W

��

·∞

::

zz
bτc : bAc

T·U
// λLP

Figure 2: Outline of the paper

Relation to previous work. Lambek [19] was the first paper to bring Grishin’s work under the
attention of a wider public. Lambek’s bilinear systems are both stronger and weaker than what we
propose here: stronger in assuming hard-wired associativity for ⊗,⊕; weaker in that our proposal
uses a more comprehensive set of distributivity principles. Continuations were put on the linguistic
agenda in [2] and [10]; the latter places the discussion explicitly in the context of the λµ calculus.
Barker and Shan, in a series of papers, [3, 4, 28, 5] among others, have worked out continuation-
based analyses for a variety of semantic phenomena. We comment on the relation of our proposal
to theirs in §5. Duality between the call-by-value and call-by-name evaluation strategies has been
obtained in [27, 9, 31], among others. Our starting point is the Curien/Herbelin system because,
in contrast to the other cited works, it has implication and difference as primitive operations.

2. Lambek-Grishin calculus

In a remarkable paper written in 1983, V.N. Grishin [14] has proposed a framework for system-
atically generalizing the Lambek calculus. The generalization has two components. First of all,
the vocabulary of type-forming operations is made symmetric: see the extended set of formulas
in (8), where in addition to the familiar ⊗, \, / (product, left and right division), one finds a dual
family ⊕,�,;: coproduct, right and left difference.2 The second component of the generalization
consists in adding distributivity principles for the interaction between the ⊗ and the ⊕ families.
We discuss these two components in turn.

A,B ::= p | atoms: s sentence, np noun phrase, . . .
A⊗B | B\A | A/B | product, left vs right division
A⊕B | A�B | B ;A coproduct, right vs left difference

(8)

Symmetry. The minimal symmetric categorial grammar (which we will refer to as LG∅) is given by
the preorder laws for the derivability relation, together with the residuation and dual residuation
principles of (10).

A ` A; from A ` B and B ` C infer A ` C preorder (9)

A ` C/B iff A⊗B ` C iff B ` A\C residuated triple
B ; C ` A iff C ` B ⊕A iff C �A ` B dual residuated triple

(10)

The residuation patterns give rise to two kinds of symmetry, which we write ·./ and ·∞. For
atomic types p, p./ = p = p∞. For complex types the definitions are given by the bidirectional
translation tables in (11). The tables succinctly represent a list of definitional equations (C/D)./ =
D./\C./, (D\C)./ = C.//D./, . . .

2A little pronunciation dictionary: read B\A as ‘B under A’, A/B as ‘A over B’, B ; A as ‘B from A’ and
A�B as ‘A less B’.
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./
C/D A⊗B B ⊕A D ; C

D\C B ⊗A A⊕B C �D
∞

C/B A⊗B A\C
B ; C B ⊕A C �A

(11)

The two symmetries and their composition (in either order) are involutive operations; moreover
we have A./∞./ = A∞ and A∞./∞ = A./. Together with the identity, then, ·./, ·∞ and their
composition constitute Klein’s four-group, the smallest non-cyclic Abelian group. With respect
to the derivability relation, ·./ is order-preserving, ·∞ is order-reversing.

A./ ` B./ iff A ` B iff B∞ ` A∞ (12)

The connections between residuation theory and substructural logics have been well studied;
see [12] for a recent survey. We review some properties that are useful for an understanding of the
rest of the paper. Following the notation of [14], for connectives ∗ ∈ {/,⊗, \,;,⊕,�}, we write
A? ∗B for B ∗A and A∗ ?B for A ∗B.

Compositions Consider the operations ?⊗ and ? \, i.e. multiplication to the left and left divi-
sion. The composition (?⊗)(? \) is contracting: it yields the familiar application law A⊗ (A\B) `
B. The composition (? \)(?⊗) is expanding: B ` A\(A ⊗ B). Together with the ·./ and ·∞
symmetries, we obtain the patterns in (13). The columns of (13) are related by ·∞; the rows by
·./.

A⊗ (A\B) ` B ` A\(A⊗B) (B/A)⊗A ` B ` (B ⊗A)/A
(B ⊕A)�A ` B ` (B �A)⊕A A; (A⊕B) ` B ` A⊕ (A;B)

(13)

Monotonicity The operations σ ∈ {?⊗,⊗ ?, ?⊕,⊕ ?, ? /, \ ?, ?�,; ?} are isotone with respect
to the derivability relation; the operations ρ ∈ {/ ?, ? \,� ?, ? ;} are antitone; i.e. we have the
following monotonicity inferences.

A ` B
CσA ` CσB

A ` B
CρB ` CρA (14)

Given the preorder laws (9) and the (dual) residuation principles (10), one easily derives (13)
and the inference rules in (14). Conversely, given (13) and (14), one can derive (10).

Distributivity principles. The minimal symmetric system LG∅ by itself does not offer us the kind
of expressivity needed to address the problems discussed in §1. The attraction of Grishin’s work
derives from the fact that he develops a systematic schema for extending the minimal symmetric
system by means of extra postulates. Combinatorially, there is a total of sixteen such extensions,
configured in groups of four.

The sixteen cells of the matrix of Figure 3 represent inequalities of the form AσBρC ≤ BρAσC,
with σ and ρ taken from the set {?⊗,⊗ ?,; ?, ?�}. Eight of these choices pick operations from
the same family: they give rise to same-sort associativity and commutativity principles for ⊗ and
⊕; we have left these cells blank as they are of no concern for our purposes. The remaining eight
are interaction principles that relate the ⊗ and ⊕ families. They are referred to as weak (or linear)
distributivity principles in [8], because no material is copied (contrast a× (b+c) = (a×b)+(a×c)
in arithmetic). We call them structure-preserving distributivities, because they leave intact the
linear order and bracketing structure information encoded in our non-associative, non-commutative
type-forming operations.

Consider first the group of postulates P1–P4. In (15) we spell out the inequality AσBρC `
BρAσC for these combinations. On the left side of the turnstile, one finds a ⊗ formula with a
difference formula (B;C or C�B) as its first or second coordinate. The Grishin principles rewrite
this configuration in such a way that the difference operations ;, � become the main connective.
The four instances in (15) are obtained by closing the choice of the operations σ, ρ under the ·./
symmetry.3

3Earlier presentations of [14] such as [19, 13] have been incomplete in only giving the ‘mixed associativity’
instances P1 and P3. The full set of postulates is essential for our linguistic applications.

6



σ \ ρ ?⊗ ⊗ ? ; ? ?�
; ? Q1 Q4
?� Q2 Q3
?⊗ P1 P4
⊗ ? P2 P3

Figure 3: Structure-preserving interaction postulates AσBρC ` BρAσC

(P1) (B ; C)⊗A ` B ; (C ⊗A) A⊗ (C �B) ` (A⊗ C)�B (P3)
(P2) A⊗ (B ; C) ` B ; (A⊗ C) (C �B)⊗A ` (C ⊗A)�B (P4)

(15)

To see the potential usefulness of these postulates for the linguistic applications we have in mind,
suppose the lexicon contains a word with a type-assignment that has one of the difference opera-
tions as its main connective, say B;C. Without interaction principles, when we use this word in
building a phrase, ; would be trapped in its ⊗ context:

A1 ⊗ · · ·Ai ⊗ (B ; C)⊗Ai+2 · · ·An ` D

By repeated application of P1 and P2, we can move the B;? component upward through the
⊗ context until it becomes the main connective. At that point, the dual residuation principle is
applicable, allowing B to move to the right side of the turnstile.

The images of (15) under ·∞ are given in (16). Their role is dual: on the right side of the
turnstile, they can rewrite a configuration where a left or right slash is trapped within a ⊕ context
into a configuration where the B subformula can be shifted to the left side by means of the
residuation principles.

(P1′) (A⊕ C)/B ` A⊕ (C/B)
(P2′) (C ⊕A)/B ` (C/B)⊕A

B\(C ⊕A) ` (B\C)⊕A (P3′)
B\(A⊕ C) ` A⊕ (B\C) (P4′)

(16)

One easily checks that the forms in (16) and those in (15) are interderivable. In (17) on the
left, P1′ is derived from P1; on the right P1 is derived from P1′. The proofs are related by the
·∞ symmetry.

(A ⊕ C)/B ` (A ⊕ C)/B

((A ⊕ C)/B)⊗B ` A ⊕ C
A ; (((A ⊕ C)/B)⊗B) ` C
(A ; ((A ⊕ C)/B))⊗B ` C P1

A ; ((A ⊕ C)/B) ` C/B
(A ⊕ C)/B ` A ⊕ (C/B)

∞←→

B ; (C ⊗A) ` B ; (C ⊗A)

C ⊗A ` B ⊕ ((B ; (C ⊗A))

C ` (B ⊕ ((B ; (C ⊗A)))/A

C ` B ⊕ ((B ; (C ⊗A))/A)
P1′

B ; C ` (B ; (C ⊗A))/A

(B ; C)⊗A ` B ; (C ⊗A)

(17)

The alternative option for interaction discussed by Grishin is given by the group of postulates
Q1–Q4. The realization of the schema AσBρC ` BρAσC is given in (18). Notice that, abstracting
from the propositional variables used, Q1–Q4 and P1–P4 are converses of each other: whereas
the P1–P4 postulates lift an embedded difference operation (;? or ?�) out of a ⊗ context, the
Q1-Q4 postulates lower the difference operation into the ⊗ context.

(Q1) A; (C ⊗B) ` (A; C)⊗B (B ⊗ C)�A ` B ⊗ (C �A) (Q3)
(Q2) (C ⊗B)�A ` (C �A)⊗B A; (B ⊗ C) ` B ⊗ (A; C) (Q4)

(18)

The general picture that emerges is a landscape where the minimal symmetric Lambek calculus
LG∅ can be extended either with P1–P4 or with their converses, or with the combination of the
two. It is shown in [6] that each of these choices is conservative with respect to LG∅, but that
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LG∅ + (18) + (15)

LG∅ + (18)

66lllllllllllll
LG∅ + (15)

hhRRRRRRRRRRRRR
(= LG)

LG∅

hhRRRRRRRRRRRRRR

66llllllllllllll

Figure 4: The Lambek-Grishin hierarchy

the combination is not: with (18)+(15) associative/commutative perturbations for ⊗/⊕ become
derivable. For the analysis of scope construal in §4, we use the extension with (15), and in the
remainder of the paper we refer to this combination as LG.

Relational semantics. We have seen in (3) that from the modal logic perspective, the binary type-
forming operation ⊗ is interpreted as an existential modality with respect to a ternary accessibility
relation R⊗ (‘Merge’). The residual / and \ operations are the corresponding universal modalities.
For the coproduct ⊕ and its residuals, the dual situation obtains: ⊕ here is the universal modality
interpreted w.r.t. an accessibility relation R⊕; the co-implications are the corresponding existential
modalities.

x  A⊕B iff ∀yz.R⊕xyz implies (y  A or z  B)
y  C �B iff ∃xz.R⊕xyz and z 6 B and x  C
z  A; C iff ∃xy.R⊕xyz and y 6 A and x  C

(19)

Soundness and completeness for the relational semantics of LG∅ and its extensions with the Grishin
distributivity principles is established in [16]. In the canonical model, worlds are construed as weak
filters, i.e. sets of formulas closed under derivability.4 Completeness for the minimal system LG∅
does not impose any restrictions on the interpretation of the R⊗ and R⊕ relations. For LG∅
extended with the Grishin interaction principles, one imposes the frame constraints corresponding
to the set of postulates one wishes to adopt, (15) or (18), and one shows that in the canonical
model these constraints are satisfied.

Decidable proof search. The axiomatization we have considered so far contains the rule of tran-
sitivity/cut (from A ` B and B ` C conclude A ` C). In the presence of expanding type
transitions, transitivity is an undesirable rule from a proof search perspective. The presentation
of LG in Figure 5 consists of the identity axiom together with the (dual) residuation principles
(10), the monotonicity rules (14), and the Grishin postulates (15) in rule form. It is shown in [22]
that adding transitivity to the rules in Figure 5 does not increase the set of derivable theorems:
every derivation that makes use of transitivity/cut can be transformed in a cut-free derivation.
Backward-chaining cut-free proof search on the basis of Figure 5 provides a decision procedure for
LG: the monotonicity rules reduce a problem A ` B to smaller problems by removing a matching
pair of connectives; the residuation rules and the Grishin interaction rules provide a finite number
of alternative forms for A ` B which one can try for pattern-matching with the monotonicity
rules.

The formulation of Figure 5 is a close relative of Display Logic; see [13] for a comprehensive
view on substructural systems from a Display Logic perspective. In Display Logic every logical
connective has a matching structural connective (not just for ⊗ and ⊕ as in the Gentzen sequent
calculus). Structural connectives are introduced by explicit rewriting steps; the Grishin rules and
residuation principles are then expressed as structural rules. The presentation of LG of Figure 5 is

4Allwein and Dunn [1] develop richer models for a hierarchy of substructural logics, accommodating both the
lattice operations and (co)product and (co)implications.
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Axiom

A ` A

Monotonicity principles

A ` B C ` D
A⊗ C ` B ⊗D;
A/D ` B/C;
D\A ` C\B

A ` B C ` D
A⊕ C ` B ⊕D;
A�D ` B � C;
D ;A ` C ;B

(Dual) residuation principles

B ` A\C
A⊗B ` C

rp

A ` C/B
rp

C �A ` B
C ` B ⊕A drp

B ; C ` A drp

Grishin distributivity principles

B ; (C ⊗A) ` D
(B ; C)⊗A ` D

(A⊗ C)�B ` D
A⊗ (C �B) ` D

B ; (A⊗ C) ` D
A⊗ (B ; C) ` D

(C ⊗A)�B ` D
(C �B)⊗A ` D

D ` (A⊕ C)/B

D ` A⊕ (C/B)

D ` B\(C ⊕A)

D ` (B\C)⊕A
D ` (C ⊕A)/B

D ` (C/B)⊕A
D ` B\(A⊕ C)

D ` A⊕ (B\C)

Figure 5: LG in cut-free form

entirely formula-based; the distinction between a ‘logical’ and a ‘structural’ occurrence of a type-
forming operation is determined by its polarity: on the left of the turnstile, principal occurrences
of ⊗, �, and ; are structural, which means the (dual) residuation and distributivity rules are
applicable to these occurrences; on the right of the turnstile, principal occurrences of ⊗, �, and
; are logical, which means these occurrences must be introduced by the monotonicity rules. For
the complementary set of connectives ⊕, /, \, the dual situation obtains5.

3. Proofs and terms

Let us turn to the computational semantics of LG derivations. In §1, we saw how for (N)L
this semantics is obtained by a translation (·)′ into LP derivations, i.e. proofs of Intuitionistic
Multiplicative Linear Logic and the associated linear lambda terms. Here we do the same for LG.
We first present a term language to label LG derivations. We then give a mapping of the LG proof
terms into linear lambda terms via a continuation-passing-style (CPS) translation. The mapping
can be realized in two ways, reflecting call-by-value and call-by-name evaluation strategies. These
two options are related by the ·∞ symmetry.

Our point of departure is the calculus of Figure 5, with now labelled formulae as the basic
declarative units. In the case of (N)L, input formulas were labeled with variables; the focus for
the construction of the proof terms built out of these variables was exclusively on the unique
succedent formula. In the case of the symmetric calculus LG this is no longer true: we need to
supplement the rules of Figure 5 with an explicit mechanism to keep track of the formula that
is in focus, on the left or on the right of the turnstile; the remaining inactive input formulas are
labeled with variables, and inactive output formulas with covariables.

5A proper Display Logic formulation of LG and of the term calculus discussed in the next section can be found
in [23].
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3.1. λLG: proof terms for LG derivations

We will derive the computational semantics for LG from the λµµ̃ calculus of [9], a term lan-
guage isomorphic to proofs in the implication/co-implication fragment of classical sequent calculus
LK. We give the sequent rules and the associated λµµ̃ terms in Figure 6.

Γ, x : A ` x : A | ∆
AxR

Γ | α : A ` α : A,∆
AxL

c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆
µ

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
µ̃

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v | e〉 : (Γ ` ∆)
Cut

Γ, x : A ` t : B | ∆
Γ ` λx.t : A→ B | ∆ → R

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆
→ L

Γ | e : A ` ∆ Γ ` v : B | ∆
Γ ` e · v : B −A | ∆ −R

Γ | e : B ` β : A,∆

Γ | λ̃β.e : B −A ` ∆
−L

Figure 6: Curien/Herbelin: λµµ̃ terms for classical sequent calculus

The λµµ̃ term language makes a distinction between three types of expressions: terms (x, v . . .),
evaluation contexts (α, e, . . .), and commands c. Terms and contexts are assigned to sequents with
a single formula in focus; the focused formula gives the type of a proof. It is marked off from the
passive formulas by means of the bar notation. If the focus is on a succedent formula, it is labeled
with a term; if it is on an antecedent formula, it is labeled with a context.

terms v ::= µα.c | x | λx.v | e · v
evaluation contexts e ::= µ̃x.c | α | v · e | λ̃β.e
commands c ::= 〈v | e〉

The axiomatic sequent comes in two forms, depending on whether one focuses on an antecedent
or on a succedent formula. The cut rule provides an evaluation context with a term of the required
type; it results in an unfocused sequent (a command). A command can be turned into a term by
non-deterministically selecting a succedent formula as the focus (the µ rule), or into an evaluation
context by putting an antecedent formula in focus (the µ̃ rule). The type-forming operations
considered here are implication and co-implication (difference). Their rules are fully symmetric.
An implication introduced in the antecedent (the → L rule ) is associated with an evaluation
context. The → R rule produces a term to put into such an applicative context. Symmetrically, a
co-implication introduced in the succedent by means of the −R rule yields a term. An evaluation
context for such a difference term is produced by the −L rule.

We will refer to the term language coding LG proofs as λLG. To adapt the λµµ̃ calculus to
λLG, we have to restrict and refine it. As for the restriction: the classical sequent calculus in cor-
respondence with the λµµ̃ terms has an additive resource management, with implicit Contraction
and Weakening. For LG, we need a multiplicative resource management. The term formation
rules for λLG, then, are subject to the restriction that for the rules combining a term v and a
context e the sets of free (co)variable occurrences of v and e are disjoint. The (co)variable-binding
rules have exactly one free (co)variable occurrence in their scope.

The refinement concerns the fact that also Commutativity and Associativity are lacking in
LG. As a result, the non-directional (co-)implication types and their associated terms are split
in two directional versions. Figure 7 gives our notation. Also here, we have restrictions on the
term formation rules, resulting from the absence of Associativity/Commutativity. Let v∗ be the
bracketed string of free variable occurrences associated with v. One can form a left abstraction
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term λlx.v provided v∗ = (xσ), i.e. the bound variable has to be the leftmost free variable of v∗;
(λlx.v)∗ then is σ. Similarly for right abstraction terms λrx.v where the bound variable has to
be the rightmost free variable of v∗, and for the left and right co-abstraction cases, where the
binding concerns co-variables. The µ and µ̃ binders do not impose positional restrictions on the
(co)variable they bind.

A→ B A\B B/A

v · e v \ e e / v

λx.v λlx.v λrx.v

contexts

terms

A−B A�B B ;A

λ̃β.e λ̃rβ.e λ̃lβ.e

e · v v � e e; v

Figure 7: Non-directional λµµ̃ constructs and their directional λLG counterparts.

The sequent rules in Curry-Howard correspondence with the λLG language are given in Figure
8. We restrict attention here to the (co)implication fragment, with formulas taken from the
grammar F ::= A | F/F | F\F | F � F | F ; F .

Like λµµ̃, λLG distinguishes three kinds of sequent, corresponding to the distinction between
terms (x, v, . . .), contexts (α, e, . . .), commands (c). The sequents associated with terms/contexts
have a distinguished formula in focus; the focused formula is marked off by means of the bar, and
gives the type of the proof. As for notation: the proof term associated with the focused formula
appears as a superscript of the derivability symbol (which we write as ` or as a long arrow to
accommodate the terms as they grow bigger).

- terms (focus right): Γ
v−−→ B |

- contexts (focus left): | A e−−→ ∆

- commands (unfocused): Γ
c−−→ ∆

Whereas in the Associative/Commutative calculus for λµµ̃, formulas can be freely taken out
of their antecedent/succedent context to be put in focus, in λLG we have to explicitly display
a formula by means of the (dual) residuation rules and Grishin interactions of Figure 5, so that
the original structural context of the formula is preserved. The grammar for structural contexts
(Γ,∆, . . . ) is given below. Structures are built out of labeled formulas. We distinguish input
(antecedent) and output (succedent) structures. A formula leaf of an input (output) structure is
labeled with a variable (co-variable).

input S• ::= Var : F | S• ⊗ S• | S◦ ; S• | S• � S◦

output S◦ ::= Covar : F | S◦ ⊕ S◦ | S•\S◦ | S◦/S•

We comment on the components of Figure 8. In the absence of Weakening, the (Co)-axiom
sequents cannot have unused material. In the absence of Contraction, the two-premise rules cannot
duplicate material: structural contexts are multiplicatively merged. The cut rule has the special
instances where one of the premises is axiomatic; these give the converses of the focusing rules
µ−1, µ̃−1 as derived rules of inference. The slash left and co-slash right rules are the Monotonicity
rules of Figure 5 in their labeled form. The slash right and co-slash left rules are half of the (dual)
residuation laws, operating at the formula level. The (dual) residuation rules in general and the
Grishin distributivities operate on unfocused sequents.

As a sample derivation, in (20) on the left we compute the term for the transition from
(s� s) ;np, the type we’ll use for QP expressions, to the Lambek type for QP subjects s/(np\s):
q : (s� s) ; np

v−−→ s/(np\s) |.
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Axiom and co-axiom, Cut

x : A
x−−→ A |

Ax
| A α−−→ α : A

Co-Ax

Γ
v−−→ A | | A e−−→ ∆

Γ
〈v|e〉−−−→ ∆

Cut

Focusing rules

Γ
c−−→ β : B

Γ
µβ.c−−−→ B |

µ x : A
c−−→ ∆

| A µ̃x.c−−−→ ∆
µ̃

Logical rules

Γ
v−−→ A | | B e−−→ ∆

| A\B v \ e−−−→ Γ\∆
\L Γ

v−−→ A | | B e−−→ ∆

Γ�∆
v � e−−−→ A�B |

�R

Γ
v−−→ A | | B e−−→ ∆

| B/A e / v−−−→ ∆/Γ

/L
Γ

v−−→ A | | B e−−→ ∆

∆ ; Γ
e; v−−−→ B ;A |

;R

y : B ⊗ Γ
v−−→ A |

Γ
λly.v−−−−→ B\A |

\R
| A e−−→ ∆⊕ β : B

| A�B λ̃rβ.e−−−−→ ∆

�L

Γ⊗ y : B
v−−→ A |

Γ
λry.v−−−−→ A/B |

/R
| A e−−→ β : B ⊕∆

| B ;A
λ̃lβ.e−−−−→ ∆

;L

Structural rules (command c unaffected):
(dual) residuation rules and Grishin distributivities of Figure 5

Figure 8: λLG
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We omit the term labeling for the intermediate steps, as it is completely determined (up to
alphabetic variants) by the labeling at the (co)axiom leaves and the rules applied. For legibility, the
structural occurrences of the operations ⊗,⊕ and their residuals are set off by dots. A derivation
consists of logical steps, operating on formulas that have been brought in focus, interspersed with
blocks of structural reasoning operating on unfocused sequents.

np
z

` np | | s
α

` s

| (np\s) ` (np · \ · s)
\L

(np\s) ` (np · \ · s)
µ̃−1

(np · ⊗ · (np\s)) ` s
rp

(np · ⊗ · (np\s)) ` s |
µ

| s
γ

` s

((np · ⊗ · (np\s)) · � · s) ` (s � s) |
�R

((np · ⊗ · (np\s)) · � · s) ` (s � s)
µ−1

(np · ⊗ · (np\s)) ` ((s � s) · ⊕ · s)
drp

np ` (((s � s) · ⊕ · s) · / · (np\s))
rp

np ` ((s � s) · ⊕ · (s · / · (np\s)))
P1′

| np ` ((s � s) · ⊕ · (s · / · (np\s)))
µ̃

| ((s � s) ; np) ` (s · / · (np\s))
;L

((s � s) ; np) ` (s · / · (np\s))
µ̃−1

(((s � s) ; np) · ⊗ · (np\s)) ` s
rp

(((s � s) ; np) · ⊗ · (np\s)) ` s |
µ

((s � s) ; np) ` (s/(np\s)) |
/R

np
z

` np | | s
α

` s

| (np\s) ` (np · \ · s)
\L

(np · ⊗ · (np\s)) ` s |
�

| s
γ

` s

((np · ⊗ · (np\s)) · � · s) ` (s � s) |
�R

| np ` ((s � s) · ⊕ · (s · / · (np\s)))



| ((s � s) ; np) ` (s · / · (np\s))
;L

(((s � s) ; np) · ⊗ · (np\s)) ` s |
�

((s � s) ; np) ` (s/(np\s)) |
/R

(20)

λry.(µγ.〈 q | λ̃lβ.(µ̃z.〈 (µα.〈 y | (z \ α) 〉 � γ) | β 〉) 〉)

Derived rules of inference: shifting focus. For legibility, we will use a more compact derivation
format, obtained by compiling away the structural part in derived inference rules for shifting the
focus. Notice first that the cut rule has two special instances, where the left premise is an instance
of Ax, or the right premise of Co-Ax. Such cuts give rise to the defocusing rules below, the
converses of the µ and µ̃ focusing rules.

| A e−−→ ∆

x : A
〈x|e〉−−−→ ∆

µ̃−1
Γ

v−−→ B |

Γ
〈v|β〉−−−→ β : B

µ−1

(21)

With the aid of (21), we obtain the four focus shifting rules below. Vertical dots stand for a
sequence of structural rule applications (residuation laws, Grishin distributivities) rewriting the
conclusion of the defocusing rules to the premise of the focusing rules. Compare the derivation
with explicit structural steps in (20) on the left with the equivalent derivation on the right, which
hides the structural steps in the focus shifting rules.
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Γ
v−−→ B |

Γ
〈v|β〉−−−→ β : B

µ−1

...

x : A
〈v|β〉−−−→ ∆

| A µ̃x.〈v|β〉−−−−−−→ ∆

µ̃

;

Γ
v−−→ B |

| A µ̃x.〈v|β〉−−−−−−→ ∆




| B e−−→ ∆

y : B
〈y|e〉−−−→ ∆

µ̃−1

...

x : A
〈y|e〉−−−→ ∆′

| A µ̃x.〈y|e〉−−−−−→ ∆′

µ̃

;

| B e−−→ ∆

| A µ̃x.〈y|e〉−−−−−→ ∆′

↼↽

| B e−−→ ∆

y : B
〈y|e〉−−−→ ∆

µ̃−1

...

Γ
〈y|e〉−−−→ α : A

Γ
µα.〈y|e〉−−−−−−→ A |

µ

;

| B e−−→ ∆

Γ
µα.〈y|e〉−−−−−−→ A |

�

Γ
v−−→ B |

Γ
〈v|β〉−−−→ β : B

µ−1

...

Γ′
〈v|β〉−−−→ α : A

Γ′
µα.〈v|β〉−−−−−−→ A |

µ

;

Γ
v−−→ B |

Γ′
µα.〈v|β〉−−−−−−→ A |

⇀⇁

Derived rules of inference: Grishin distributivities. The rules (/, \R′) and (�,;L′) below are
derived rules of inference obtained by composing the original (/, \R) and (�,;L) rules with the
structural steps licensed by the Grishin distributivities. In the antecedent (succedent), the notation
Γ{∆} picks out an input (output) substructure ∆ along the input (output) branch of �,; (/, \)
structures. (Example: consider an antecedent structure Γ1 ; (Γ2 �Γ3). Writing 2 for the hole, it
matches the Γ{∆} notation with (i) Γ = 2, ∆ = Γ1 ; (Γ2 � Γ3), (ii) Γ = Γ1 ; 2, ∆ = Γ2 � Γ3, or
(iii) Γ = Γ1 ; (2� Γ3), ∆ = Γ2.)

Γ′{y : B ⊗ Γ} v−−→ A |

Γ′{Γ} λly.v−−−−→ B\A |

\R′
| A e−−→ ∆′{∆⊕ β : B}

| A�B λ̃rβ.e−−−−→ ∆′{∆}

�L′

Γ′{Γ⊗ y : B} v−−→ A |

Γ′{Γ} λry.v−−−−→ A/B |
/R′

| A e−−→ ∆′{β : B ⊕∆}

| B ;A
λ̃lβ.e−−−−→ ∆′{∆}

;L′

(22)

Using the (/, \R′) and (�,;L′) versions, the premise and conclusion of the focus shifting rules
are related purely in terms of the (dual) residuation principles. Compare (20) with the derivation
in (23) below where in the (;L′) step, s � s commutes with / to find its proper place in the
succedent structure. In (20) the Grishin interaction takes place when the focus is shifted from
antecedent np to succedent s � s. In the remainder, we will freely use the compact derivation
format.
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np
z

` np | | s
α

` s

| (np\s) ` (np · \ · s)
\L

(np · ⊗ · (np\s)) ` s |
�

| s
γ

` s

((np · ⊗ · (np\s)) · � · s) ` (s � s) |
�R

| np ` (((s � s) · ⊕ · s) · / · (np\s))



| ((s � s) ; np) ` (s · / · (np\s))
;L′

(((s � s) ; np) · ⊗ · (np\s)) ` s |
�

((s � s) ; np) ` (s/(np\s)) |
/R′

(23)

3.2. Continuation-passing-style translation

We now provide a continuation-passing-style (CPS) translation that maps LG derivations and
the associated λLG proof terms to LP proofs/terms.

In the semantics of programming languages, CPS interpretation has been a fruitful strategy
to make explicit (and open to manipulation) aspects of computation that remain implicit in a
direct interpretation. In the direct interpretation, a function simply returns a value. Under the
CPS interpretation, functions are provided with an extra argument for the continuation of the
computation. This explicit continuation argument is then passed on when functions combine with
each other. Key concepts, then, are “computation”, “continuation” and “value” and the way they
relate to each other for different evaluation strategies.

CPS translations can be executed in a variety of ways. In this paper, we adopt the Plotkin-
style translation of [20], which we extend with clauses for the difference operations �,;.6 We first
consider the effect of the CPS mapping at the level of LG types, comparing a call-by-value (cbv)
and a call-by-name (cbn) regime; then we define the CPS translation at the level of the λLG proof
terms.

The target language has a distinguished type R (responses). We write A⊥ as an abbreviation
for A → R. As in the direct interpretation for (N)L, the directional implications /, \ and co-
implications �,; of the source language are mapped to the same interpretation in the non-
directional target language LP. On the left in Table 1, one finds the cbv translation. For a source
language type A, the cbv translation d·e produces a value of type A in the target language. For p
atomic, dpe = p̃ . Implications A\B are mapped to functions that produce the response type R
given two inputs: an A value, dAe, and a B continuation, i.e. a function from B values to R, dBe →
R. There are two essentially equivalent ways of expressing this idea without using conjunction in
the target logic: the curried form dA\Be = dAe → (dBe → R)→ R (abbreviated: dAe → dBe⊥⊥)
interprets A\B as a function from A values to B computations. Alternatively, taking first the B
continuation and then the A value, one has the interpretation (dBe → R) → (dAe → R) given
below. The interpretation of the difference operations �,; respects the (·)∞ duality in the sense
that the interpretation of an A�B value is the same as that of an A\B continuation.

On the right in the table, one finds the cbn interpretation. The cbn translation b·c of a source
language type A produces a continuation in the target language. The cbn regime is defined by
duality: bAc = dA∞e.

6In [7], we used the translation of [9] where a difference type A � B is seen as a pair of an A value and a B
continuation, and hence dA\Be = dA�Be⊥. Under that interpretation, our account of scope ambiguity could only
be executed under the cbn regime. The translation adopted here accommodates the scope account both under cbv
and cbn.
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dB/Ae = dA\Be = dBe⊥ → dAe⊥

dB ;Ae = dA�Be = dA\Be⊥

= (dBe⊥ → dAe⊥)⊥

bA;Bc = bB �Ac = bBc⊥ → bAc⊥

bA/Bc = bB\Ac = bB �Ac⊥

= (bBc⊥ → bAc⊥)⊥

Table 1: CPS translations: types

V CBV
A\B = KCBV

B → KCBV
A

V CBV
A�B = (KCBV

B → KCBV
A )→ R

KCBV
A = V CBV

A → R

CCBV
A = KCBV

A → R

KCBN
B�A = CCBN

B → CCBN
A

KCBN
B\A = (CCBN

B → CCBN
A )→ R

CCBN
A = KCBN

A → R

Table 2: Values, continuations, computations

In what follows, it will be handy to have a way of referring to values, continuations and
computations without spelling out the types in full. In Table 2, we write VA for values of type A,
KA for continuations, and CA for computations.

The cbv translation of the proof terms of λLG is given in Table 3. The translation takes terms
to computations, and contexts to continuations. With respect to the v \ e : A\B and v� e : A�B
constructs, notice that the slash and the division operations process the term v : A and the context
e : B in exactly the same way: λu.(dve (u dee)). On the left side of the turnstile, this produces an
A\B continuation; on the right side, an A�B computation, i.e. λk.(k dv \ ee).

For the cbn translation, we have b·c = d·∞e. For commands 〈v|e〉∞ = 〈e∞|v∞〉. For terms and
contexts, we have the mapping given in (24).

x∞ = α

(λlx.v)∞ = λ̃rα.v∞

(λrx.v)∞ = λ̃lα.v∞

(v � e)∞ = e∞ \ v∞
(e; v)∞ = v∞ / e∞

(µβ.c)∞ = µ̃y.c∞

α∞ = x

(λ̃rα.e)∞ = λlx.e∞

(λ̃lα.e)∞ = λrx.e∞

(v \ e)∞ = e∞ � v∞
(e / v)∞ = v∞ ; e∞

(µ̃y.c)∞ = µβ.c∞

(24)

Table 4 specifies how te CPS translations relate proofs/terms in the source logic LG to
proofs/terms in the target logic LP (cf Prop 8.1 and 8.3 of [9]; the preservation of types theorem

(terms) dxe = λk.(k x̃)

dλlx.ve = dλrx.ve = λk.(k λuλx̃.(dve u))

dv � ee = de; ve = λk.(k λu.(dve (u dee)))

dµα.ce = λα̃.dce

(contexts) dαe = α̃

dv \ ee = de / ve = λu.(dve (u dee))

dλ̃rβ.ee = dλ̃lβ.ee = λk.(k λβ̃.dee)

dµ̃x.ce = λx̃.dce

(commands) d〈v | e〉e = (dve dee)

Table 3: Call-by-value translation: proof terms

16



LG
CPS translation−−−−−−−−−−→ LP

Γ
v−−→ B | dΓ•e, dΓ◦e⊥ ` dve : dBe⊥⊥

bΓ•c⊥, bΓ◦c ` bvc : bBc⊥

| A e−−→ ∆ d∆•e, d∆◦e⊥ ` dee : dAe⊥

b∆•c⊥,b∆◦c ` bec : bAc⊥⊥

Table 4: Source logic LG to target logic LP

of [20]). We write Γ• for antecedent (input) formulas of structure Γ; Γ◦ for succedent (output)
formulas of structure Γ. In the case where the antecedent (succedent) consists purely of input
(output) parts, the call-by-value translation for an λLG term v of type B is an LP proof taking
antecedent values to a B computation; the call-by-name translation yields an LP proof taking
antecedent computations to a B computation. For an λLG context e of type A, the call-by-name
translation is an LP proof taking succedent continuations to an A continuation; the call-by-name
translation yields an LP proof taking succedent continuations to a function from A computations
into R.

An enlightening discussion of the dynamics of call-by-value and call-by-name can be found
in [26]. From our parsing-as-deduction perspective, the cbv strategy can be seen as data-driven:
it processes the arguments before processing the function; the cbn strategy is goal-driven: it
processes the function until there is a need to process the arguments. Evaluation contexts, in this
perspective, are expressions with a placeholder for a missing term: one can either apply a context
to a value of the required type, or give it a name (µ̃) to refer to it later in the derivation. From
the dual perspective, a term is an expression with a placeholder for a missing context which wraps
itself around the term. A term-as-a-computation can either get input from its context, or one can
give it a name (µ) for later reference.

To close this section, we illustrate the cbv and cbn regimes with the translations of the LG

derivation we gave before. First cbv for q : (s � s) ; np
v−−→ s/(np\s) | . The λLG term and its

cbv translation are given in (25).

v = λry.(µγ.〈 q | λ̃lβ.(µ̃z.〈 (µα.〈 y | (z \ α) 〉 � γ) | β 〉) 〉)

dve = λk.(k λỹ.(λγ̃.(q̃ λβ̃.(λz̃.(β̃ λu.((γ̃ (u ỹ)) z̃))))))

(25)

The cbn translation is read off from the ·∞ image of the derivation. We explicitly label all steps
this time.

q : (s� s) ; np
v−−→ s/(np\s) | ∞←−−→ | (s � np) ; s

e−−→ ξ : np/(s\s)
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y0 : s
y0

` s |

y1 : s
y1

` s | | np
γ

` γ : np

(y1 : s � γ : np)
y1 � γ−−−−−→ (s � np) |

�R

| s
µ̃y1.〈 (y1 � γ) | α 〉
−−−−−−−−−−−−−−→ (α : (s � np) ⊕ γ : np)




| (s\s)
y0 \ µ̃y1.〈 (y1 � γ) | α 〉
−−−−−−−−−−−−−−−−−→ (y0 : s \ (α : (s � np) ⊕ γ : np))

\L

(α : (s � np) ; (y0 : s ⊗ x : (s\s)))
µγ.〈 x | (y0 \ µ̃y1.〈 (y1 � γ) | α 〉) 〉
−−−−−−−−−−−−−−−−−−−−−−−−−−→ np |

�

(α : (s � np) ; y0 : s)
λrx.(µγ.〈 x | (y0 \ µ̃y1.〈 (y1 � γ) | α 〉) 〉)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (np/(s\s)) |

/R′

| s
µ̃y0.〈 λrx.(µγ.〈 x | (y0 \ µ̃y1.〈 (y1 � γ) | α 〉) 〉) | ξ 〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (α : (s � np) ⊕ ξ : (np/(s\s)))




| ((s � np) ; s)
λ̃lα.(µ̃y0.〈 λrx.(µγ.〈 x | (y0 \ µ̃y1.〈 (y1 � γ) | α 〉) 〉) | ξ 〉)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ξ : (np/(s\s))

;L′

(26)

e = λ̃lα.(µ̃y0.〈 λrx.(µγ.〈 x | (y0 \ µ̃y1.〈 (y1 � γ) | α 〉) 〉) | ξ 〉) = v∞

dee = λk.(k λα̃.(λỹ0.(ξ̃ λγ̃.(λx̃.((x̃ λỹ1.(α̃ λu.((u γ̃) ỹ1))) ỹ0))))) = be∞c

4. Application: scope construal

We turn now to our analysis of scope construal using the machinery developed in the previous
sections. Our account has two components.

Derivational semantics Here we concentrate on the λLG proof terms and their CPS interpre-
tation. We show how, at the level of these proof terms, a type assignment (s � s) ; np
to generalized quantifier phrases solves the problems for a type assignment s/(np\s) in the
asymmetric setting mentioned in §1. As for type uniformity: with a (s� s);np assignment,
a QP can occupy all positions where a np argument is selected. As for type flexibility: in
environments with multiple generalized quantifier phrases, LG generates scope construals
parallel to the surface order of the QPs, but also permutations of these construals, both
locally (within the context of the predicate selecting the np arguments bound by the QPs)
and non-locally. Our account accommodates both the call-by-value and the call-by-name
regimes, the first reflecting a data-driven, the second a goal-driven parsing strategy.

Lexical semantics Our second aim is to relate the CPS interpretation to the model-theoretic
interpretation for Lambek derivations discussed in §1. To realize this second aim, we identify
the response type R with Vs as far as their denotations are concerned. We define translations
V·W,T·U lifting the lexical constants from the type they have in the original Lambek semantics
to the type required by the cbv or cbn level. For types staying within the Lambek vocabulary,
the V·W,T·U translations produce the readings associated with NL derivations. For types
using the dual vocabulary, specifically our QP type (s � s) ; np, the translations result in
scope construals that are beyond the reach of NL.

To illustrate the interplay between derivational and lexical semantics, we give a worked-out
example of a simple Subject Verb Phrase combination, ‘Molly left’, juxtaposing the cbv and cbn
interpretation strategies.
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cbv cbn

| np
β

` np

np ` np |
�

| s
α

` s

| (np\s) ` (np · \ · s)
\L

(np · ⊗ · (np\s)) ` s |
�

∞←−−→

s
x

` s |

np
y

` np |

| np ` np



(s · � · np) ` (s � np) |
�R

| s ` ((s � np) · ⊕ · np)



λLG term: µα.〈 left | (µβ.〈 molly | β 〉 \ α) 〉 µ̃x.〈 (x� µ̃y.〈 y | molly 〉) | left 〉

CPS image: λc.((VleftW c) VmollyW) λc.(TleftU λh.((h TmollyU) c))

(27)
Consider the derivation on the left. The task is to parse a sentence (focused goal formula s),

using lexical constants molly and left of type np and np\s respectively. Each lexical item is inserted
by a command 〈word | environment〉. The CPS image of the derivation, under the call-by-value
interpretation, is an LP term denoting a function mapping antecedent values to a computation
for the focused succedent type:

V CBV
np × V CBV

np\s −→ CCBV
s

The typing of the target language term is given in (28) below. At this level, VmollyW and VleftW
denote an np value and a np\s value, i.e. a function from s continuations to np continuations
respectively.

V CBV
np VmollyW dnpe

V CBV
np\s = KCBV

s → KCBV
np VleftW dse⊥ → dnpe⊥

KCBV
s c dse⊥

(28)

The call-by-name interpretation for the same sentence is given on the right in (27). The
target, for the call-by-name interpretation, is an LP term denoting a function mapping antecedent
computations to a computation for the focused goal type:

CCBN
np × CCBN

np\s −→ CCBN
s

The call-by-name interpretation is obtained as the composition of the (·)∞ duality and the call-
by-value mapping; the typing of the resulting term in the target language is given below. Note
that at the level of the atoms, we are now dealing with continuations, not values. For example,
bnpc denotes an np continuation, and hence bnpc⊥ (= bnpc → R) a computation.

CCBN
np TmollyU bnpc⊥

V CBN
np\s = CCBN

np → CCBN
s h bnpc⊥ → bsc⊥

CCBN
np\s TleftU (bnpc⊥ → bsc⊥)⊥⊥

KCBN
s c bsc

(29)

Lifting the lexicon. Moving from the derivational to the lexical level, the task is to lift the constants
of the direct interpretation of type A′ to the type of their CPS images: values V CBV

A for the cbv
interpretation, computations CCBN

A for cbn. We give sample lexical entries in Figures 9 and 10. For
cbv, VmollyW is the identity transformation on a constant molly denoting an individual. For VleftW,
the recipe lifts a constant left denoting a function from individuals to truth values, np′ → s′,
to a function from s continuations to np continuations. For the cbn interpretation, the same
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np VmollyW = molly

np\s VleftW = λc.λx.(c (left x))

(np\s)/np VteasesW = λv.λy.(v λc.λx.(c ((teases y) x)))

(np\s)/(s/(np\s)) VneedsW = λv.λq.(v λc.λx.(c ((needs (shift q)) x)))

shift = λh.λc′.((h id) λc′′.λx′.(c′′ (c′ x′)))

(np\s)/(s/(s\s)) VthinksW = λv.λq.(v λc.λx.(c ((thinks (shift q)) x)))

s/(np\s) VsomebodyW = λc.λv.(c (∃ λx.((v id) x)))

Figure 9: Sample lexical entries: cbv interpretation (values)

constants are lifted to computations. Substituting the lexical specifications in the CPS terms, and
simplifying, produces the same result for the cbv and cbn interpretations: λc.(c (left molly)), a
term denoting an s computation. Providing this computation with the trivial continuation id, we
obtain (left molly), a term that will be evaluated as true if the individual denoted by molly is a
member of the set of individuals denoted by left.

cbv λc.((VleftW c) VmollyW)

= λc.((λc′.λx.(c′ (left x)) c) molly)

=β λc.(c (left molly))

cbn λc.(TleftU λh.((h TmollyU) c))

= λc.(λQ.(Q λq.λc′.(q λx.(c′ (left x)))) λh.((h λk.(k molly)) c))

=β λc.(c (left molly))

(30)

The sample cbv and cbn lexica of Figures 9 and 10 contain some more entries that will be used
in the discussion of scope construal below. We briefly comment on the way the mappings V·W and
T·U are worked out. For simple n-place predicates like intransitive ‘left’ or transitive ‘teases’ we
have constants of type np′ → s′ and np′ → np′ → s′ denoting (characteristic functions of) sets of
individuals and relations between individuals respectively. A simple first-order transitive verb like
‘teases’ has to be distinguished from higher-order predicates like ‘seeks’, ‘needs’ which cannot be
interpreted as relations between individuals. By assigning a type (np\s)/(s/(np\s)), with a ‘lifted’
direct object category, we can give a lexical specification in terms of a constant needs denoting a
relation between an individual (the subject) and a set of sets of individuals, ((np′ → s′)→ s′)→
np′ → s′. The mediator between that type and the cbv value d(np\s)/(s/(np\s))e is the shift
combinator; cf [30]; for the cbn interpretation we use the variant shiftn. The motivation for a type
assignment with a lifted argument carries over to verbs with a sentential complement, like ‘think’,
where again a treatment as a relation between an individual and a truth value, corresponding to a
type assignment (np\s)/s, would be inappropriate. Finally, the sample lexica contain entries for
subject QPs, such as ‘somebody’ with type s/(np\s). The lexical specification is given in terms of
a logical constant ∃ of type (np′ → s′)→ s′ denoting a set of sets of individuals. To obtain the set
of individuals corresponding to the verb phrase value np\s, its CPS image under cbv (the variable
v) is given the identity s continuation. Similarly for cbn, where the np hypothesis is treated as a
computation, not a value.

In (31) we present the λLG proof terms for some derivations with these lexical items, leaving
it to the reader to verify that the CPS images of these proof terms, after substitution of the lexical
specifications, produce the given readings, under cbv as well as under cbn.
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np TmollyU = λk.(k molly)

np\s TleftU = λQ.(Q λq.λc.(q λx.(c (left x))))

(np\s)/np TteasesU = λQ.(Q λq.λQ′.(Q′ λq′.λc.(q′ λx.(q λy.(c ((teases y) x))))))

(np\s)/(s/(np\s)) TneedsU = λQ.(Q λC.λQ′.(Q′ λq.λc.(q λx.(c ((needs (shiftn C)) x)))))

shiftn = λh.λc.((h λu.(u λu′.(u′ λq′.λc′.(q′ λx.(c′ (c x)))))) id)

(np\s)/(s/(s\s)) TthinksU = λQ.(Q λC.λQ′.(Q′ λq.λc.(q λx.(c ((thinks (shiftn C)) x)))))

s/(np\s) TsomebodyU = λQ.(Q λu.(u λv.λc.(c (∃ λx.((v λc′.(c′ x)) id)))))

Figure 10: Sample lexical entries: cbn interpretation (computations)

a Somebody left.

µα.〈 somebody | (α / λly.(µγ.〈 left | (y \ γ) 〉)) 〉 (= v)

λc.(c (∃ λx.(left x)))

b Somebody teases Molly.

µα.〈 somebody | (α / λly.(µγ.〈 teases | ((y \ γ) / µβ.〈 molly | β 〉) 〉)) 〉

λc.(c (∃ λx.((teases molly) x)))

c Molly needs somebody.

µα.〈needs | ((µγ.〈molly | γ〉 \ α) / λry.(µβ.〈somebody | (β / λlz.(µα1.〈y | (z \ α1)〉))〉))〉

λc.(c ((needs λP.(∃ λx.(P x))) molly))

d Molly thinks somebody left

µα.〈 thinks | ((µδ.〈 molly | δ 〉 \ α) / λrz.(µβ.〈 z | (v \ β) 〉)) 〉

λc.(c ((thinks λc′.(c′ (∃ λx.(left x)))) molly))

(31)

Scope construal

The readings computed above coincide with the direct interpretation of the NL derivations,
and suffer from the limitations of NL. A QP with type s/(np\s) can occur in subject position;
with this type, there is no derivation for ‘Molly teases somebody’ next to (b). In the (c) example,
we do find ‘somebody’ in the object position because the higher-order predicate ‘needs’ has the
lifted s/(np\s) type for its object. But of the two interpretations we would like to associate with
this sentence, the QP type assignment s/(np\s) produces only the narrow scope reading, with
‘needs’ taking scope over ∃; the wide scope reading where ∃ outscopes ‘needs’ is lacking. Similarly,
for (d), we find the local interpretation where ‘somebody’ takes scope in the embedded clause;
the non-local reading with ∃ taking scope at the main clause level cannot be obtained from the
s/(np\s) type assignment. Let us turn then to our QP type assignment (s� s) ; np, and see how
it overcomes these expressive limitations.

Type uniformity for simple QP sentences Consider first the variant of (a) where we use
‘someone’ with the (s� s) ; np type. The derivation and the associated λLG term together with
the CPS images under cbv and cbn were given above in (25) and (26).
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µα.〈 someone | λ̃lβ.(µ̃z.〈 (µα1.〈 left | (z \ α1) 〉 � α) | β 〉) 〉 (= v)

dve = λc.(VsomeoneW λy.(λx.(y λc′.((VleftW (c′ c)) x))))

bvc = λc.(TsomeoneU λq.(λy′.((y′ λc′′.(TleftU λu.((u q) c′′))) c)))

(32)

The CPS images determine the typing constraints that we need in order to solve the equations
for the lexical specification of VsomeoneW and TsomeoneU. For expository purposes, we give an
interpretation in terms of the logical constant ∃ in (33) . This interpretation is provisional: it
is adequate for the derivations of the sample sentences we present below, but it will have to be
refined when we discuss the full set of derivational choice points at the end of this section. For
cbv, the parameters y and x are of type KCBV

s�s and V CBV
np respectively. The lexical specification for

VsomeoneW in (33) provides the lifted identity combinator λu.(u id) for y. For cbn, the parameters
q and y′ are of type CCBN

np and CCBN
s → CCBN

s respectively. The lexical specification for TsomeoneU
provides the computation for the individual variable x for q and the identity on s computations
for y′. After lexical substitution, the cbv and cbn readings reduce to λc.(∃ λx.(c (left x))), as
desired.

(s� s) ; np VsomeoneW = λQ.(∃ λx.((Q λu.(u id)) x))

TsomeoneU = λQ.(∃ λx.((Q λk.(k x)) λc′.λc.(c′ c)))
(33)

The LG type assignment is compatible with any syntactic position where an np argument is
selected. Compare (32) with the derivation for a transitive sentence with (s � s) ; np in object
position, for example ‘Molly teases someone’.

( np︸︷︷︸
Molly

· ⊗ ·(((np\s)/np)︸ ︷︷ ︸
teases

· ⊗ · ((s � s) ; np)︸ ︷︷ ︸
someone

))
v

` s |

v = µα.〈 someone | λ̃lβ.(µ̃z.〈 (µα1.〈 teases | ((µβ1.〈molly | β1〉 \ α1) / z) 〉 � α) | β 〉) 〉

dve = λc.(VsomeoneW λy.(λx.(y λc′.((VteasesW λw.((w (c′ c)) VmollyW)) x))))

= λc.(∃ λx.(c ((teases x) molly)))

(34)
Surface scope versus inverted scope We turn to sentences with a transitive verb and a (s�s);np

QP in subject and in object position. In shifting the focus from the goal formula to an antecedent
formula, there is a choice now: do we activate the subject or the object first? This derivational
ambiguity leads to the two scope construals for the sentence. The derivations have a common core:
µγ.〈 tv | ((x \ γ) / y) 〉 (v′ in (35)), the combination of the transitive verb tv with np parameters x
and y for the subject and object. If one reaches v′ by first activating the subject QP, removing its
connectives with (;L) and (�R), one obtains the ∀/∃ construal which coincides with the surface
order of the QPs. The alternative option of first activating the object QP leads to the inverted
∃/∀ construal.

(((s � s) ; np)︸ ︷︷ ︸
everyone

· ⊗ ·(((np\s)/np)︸ ︷︷ ︸
teases

· ⊗ · ((s � s) ; np)︸ ︷︷ ︸
someone

)) ` s |

µα.〈 everyone | λ̃lβ0.(µ̃x.〈 (µα1.〈 someone | λ̃lβ1.(µ̃y.〈 (v′ � α1) | β1 〉) 〉 � α) | β0 〉) 〉

= λc.(∀ λx.(∃ λy.(c ((teases y) x))))

µα.〈 someone | λ̃lβ1.(µ̃y.〈 (µα1.〈 everyone | λ̃lβ0.(µ̃x.〈 (v′ � α1) | β0 〉) 〉 � α) | β1 〉) 〉

= λc.(∃ λy.(∀ λx.(c ((teases y) x))))

(35)
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Extensional versus higher-order predicates The non-determinism in the choice of the active
formula also underlies the scope ambiguity for ‘Molly needs someone’ with a higher-order transitive
verb. We saw above that the de dicto reading λc.(c ((needs λP.(∃ λx.(P x))) molly)), where ‘needs’
outscopes ∃, is within the reach of NL. To obtain that reading in LG, we can activate the type
of the verb first. This leads to a derivation where the goal formula s matches the input s of the
type for ‘needs’. We have given the derivation for the abbreviated branch in (20).

| np
γ

` np

np ` np |
�

| s
α

` s

| (np\s) ` (np · \ · s)
\L

...

((s � s) ; np)
(20)

` (s/(np\s)) |

| ((np\s)/(s/(np\s))) ` ((np · \ · s) · / · ((s � s) ; np))
/L

(np · ⊗ · (((np\ s )/(s/(np\s))) · ⊗ · ((s � s) ; np))) ` s |
�

µα.〈 needs | ((µγ.〈 molly | γ 〉 \ α) / (20)) 〉 (36)

LG also produces the de re reading, with ∃ outscoping ‘needs’. In the derivation below, the
QP is activated first, and the goal formula matches the input s of the type for ‘someone’. In the
abbreviated part of the derivation with proof term v′, the input np of the QP is lifted to the
s/(np\s) level required by the predicate ‘needs’.

(np · ⊗ · (((np\s)/(s/(np\s))) · ⊗ · np))
v′

` s | | s
α

` s

((np · ⊗ · (((np\s)/(s/(np\s))) · ⊗ · np)) · � · s) ` (s � s) |
�R

| np ` (((np\s)/(s/(np\s))) · \ · (np · \ · ((s � s) · ⊕ · s)))



| ((s � s) ; np) ` (((np\s)/(s/(np\s))) · \ · (np · \ · s))
;L′

(np · ⊗ · (((np\s)/(s/(np\s))) · ⊗ · ((s � s ) ; np))) ` s |
�

µα.〈 someone | λ̃lβ.(µ̃y.〈 (v′ � α) | β 〉) 〉

v′ = µα0.〈 needs | ((µγ.〈 molly | γ 〉 \ α0) / λrz.(µβ0.〈 z | (y \ β0) 〉)) 〉

; λc.(∃ λy.(c ((needs λP.(P y)) molly)))

(37)

Complement clauses and non-local construal The examples of scope ambiguity we have seen so
far are realized within a single clausal domain. In the situation where a quantifier phrase occurs in
an embedded clause, LG allows for the possibility of non-local scope construal. Examples would
be sentences like ‘Alice described how every prisoner escaped’ (which could involve a description
for every prisoner, or a description of a collective escape) or ‘Alice thinks someone is cheating’
(which could express Alice’s idea about a particular cheater, or her general suspicion that cheating
is going on). Compare the local and non-local readings for ‘Molly thinks someone left’ in (38).

local scope: λc.(c ((thinks λc′.(c′ (∃ λx.(left x)))) molly))

non-local scope: λc.(∃ λx.(c ((thinks λc′.(c′ (left x))) molly)))
(38)

The local reading, as we saw, is the only one available in NL under the s/(np\s) type as-
signment for a QP. In LG it is obtained by providing the derivation for ‘someone left’, which we
gave above as (32), as the complement for ‘think’. The non-local reading is computed below. The
derivation activates (s� s) ;np first, and establishes an axiom link between the goal formula and
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the input s of the QP. The abbreviated part of the derivation then has a simple np subject for the
complement of ‘think’: the input np subformula of the QP, which is bound by µ̃.

(np · ⊗ · (((np\ s )/(s/(s\s))) · ⊗ · (np · ⊗ · (np\s))))
v′

` s | | s
α

` s

((np · ⊗ · (((np\s)/(s/(s\s))) · ⊗ · (np · ⊗ · (np\s)))) · � · s) ` (s � s) |
�R

| np ` ((((np\s)/(s/(s\s))) · \ · (np · \ · ((s � s) · ⊕ · s))) · / · (np\s))



| ((s � s) ; np) ` ((((np\s)/(s/(s\s))) · \ · (np · \ · s)) · / · (np\s))
;L′

(np · ⊗ · (((np\s)/(s/(s\s))) · ⊗ · (((s � s ) ; np) · ⊗ · (np\s)))) ` s |
�

µα.〈 someone | λ̃lβ.(µ̃x.〈 (v′ � α) | β 〉) 〉

v′ = µα1.〈thinks | ((µγ.〈molly | γ〉 \ α1) / λrx2.(µβ1.〈left | (x \ µ̃z1.〈x2 | (z1 \ β1)〉)〉))〉

; λc.(∃ λx.(c ((thinks λc′.(c′ (left x))) molly)))

(39)

Depending on the choice of lexical predicate, the possibility for a non-local construal will not
always be available for a quantifier phrase in an embedded clause. Some predicates selecting a
clausal complement turn this complement into a scope island for embedded quantifier phrases.
An example would be a sentence ‘Alice observed everyone slept’ which arguably has no reading
involving individual observations for each sleeper, this in contrast with a monoclausal structure
‘Alice watched everyone sleep’. Our QP type assignment (s � s) ; np allows non-local scope for
quantifiers in embedded clauses, as we have just seen, so a scope island will have to be explicitly
imposed by the predicate selecting a complement clause. A general method for the imposition
of island constraints, using unary modalities, is discussed in [24]. The technique can be readily
imported in LG.

Choice points for focusing In the derivations we have presented so far, the choice of focusing
on a QP formula (s� s) ; np and eliminating its main connective by means of (;L′) was always
immediately followed by the activation of the s� s subformula and application of the (�R) rule.
The (;L′) step binds the covariable for s� s; the (�R) co-application step determines the scope.

Taking into account the full set of derivational choice points, we see that there is nothing that
commits us to this particular sequence of steps: there can be rules intervening between the (;L′)
and (�R) steps that decompose the QP type in its atomic parts. Contrast the derivation in (40)
below with (39). Both derivations start with the activation of the QP formula. But in (40) the
(;L′) step is followed by shifting the focus to the type for ‘needs’, which is decomposed in its
main connective by (/L). The effect on the axiom linking is that the goal formula is matched
with the input s of ‘needs’, and that the input s of the QP is matched in the computation for the
lifted direct object. The derivation in (40), in other words, corresponds to the de dicto reading,
with ‘needs’ outscoping the QP. But substitution of the lexical specifications for VsomeoneW or
TsomeoneU in (33) in the cbv or cbn CPS image of (40) would wrongly produce the wide scope
de re reading, because it determines the scope at the point where (;L′) is applied, ignoring the
contribution of the (�R) step.
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| np
γ

` np

np ` np |
�

| s
α

` s

| (np\s) ` (np · \ · s)
\L

...

((s � s ) ·; · np)
v′′

` ( s /(np\s)) |

| ((np\s)/(s/(np\s))) ` ((np · \ · s) · / · ((s � s) ·; · np))
/L

| np ` ((s � s) · ⊕ · (((np\s)/(s/(np\s))) · \ · (np · \ · s)))

↼↽

| ((s � s) ; np) ` (((np\s)/(s/(np\s))) · \ · (np · \ · s))
;L′

(np · ⊗ · (((np\ s )/(s/(np\s))) · ⊗ · ((s � s) ; np))) ` s |
�

µα.〈 someone | λ̃lβ0.(µ̃y.〈 needs | ((µγ.〈 molly | γ 〉 \ α) / v′′) 〉) 〉

v′′ = λrz1.(µα1.〈 (µβ1.〈 z1 | (y \ β1) 〉 � α1) | β0 〉)
(40)

There are two ways of dealing with this situation. The first is to leave the inference rules of
Figure 8 unchanged, and adjust the lexical specifications of VsomeoneW and TsomeoneU in such a
way that they properly reflect the derivational independence of the (;L′) and (�R) steps. The
second option would be to add a primitive 3-place connective to λLG, with a pair of inference
rules that in one step decompose the QP type in its three subtypes. Such a binding connective
q(A,B,C) has in fact been proposed in [21], but a complete logic for it has not been given. We
leave the second option as a topic for further research and work out the first here.

The adjusted lexical specifications for cbv and cbn QPs in (41) are given in terms of a logical
constant E , rather than ∃. The ∃ constant denotes a set of sets of individuals, as we saw. The E
constant instead denotes a set of sets of pairs of individuals (the x parameter) and functions from
s values to s values (the c′ parameter). Intuitively, the x parameter identifies the variable that
will be bound; the c′ parameter identifies the scopal domain where the quantificational effect is
actually computed. We can use argument lowering alow and a shift ′ combinator to write the cbv
recipe in a more concise form.

(s� s) ; np VsomeoneW = λQ.(E shift ′(alow Q))

shift ′ = λhλc′.(h λcλv.(c (c′ v)))

alow = λfλv.(f λk.(k v))

= λQ.(E λx.λc′.((Q λu.(u λc.λv.(c (c′ v)))) x))

TsomeoneU = λQ.(E λx.λc′.((Q λk.(k x)) λc′′.λc.(c′′ λv.(c (c′ v)))))

(41)

With the revised lexical specifications, the cbv/cbn interpretation of (40) correctly produces
the de dicto reading, with c′ in the scope of needs. (With Eyc′ φ as syntactic sugaring for E λy.λc′.φ.)
The de re interpretation of (39) has c′ outscoping needs. The CPS image of the derivation (36)
reflects the fact that the QP is activated after the verb ‘needs’. Also for this alternative way of
computing the de dicto reading we find c′ in the scope of needs.

d(36)e = b(36)c = λc.(c ((needs λP.(Eyc′ (c′ (P y)))) molly))

d(40)e = b(40)c = λc.(Eyc′ (c ((needs λP.(c′ (P y))) molly)))

d(39)e = b(39)c = λc.(Eyc′ (c (c′ ((needs λP.(P y)) molly))))

(42)

A model-theoretic interpretation of E requires that we change the intended denotation domains for
s values. Instead of seeing them as denoting truth values, we can model them as state transitions,
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i.e. functions STATE → STATE → BOOL, the denotations for dynamic propositions. Spelling
out E at the level of the lambda recipe, we can provide the program λφλiλj.(∃k.(i[x]k ∧ (φ k j)))
for the c′ parameter, effecting dynamic existential binding at the point where c′ is applied. The
syntactic position of E in the terms of (42) corresponds with the moment of activation in the proof;
for the computation of the semantic value J·K, this procedural bit of information is passed over.

i J(Exc φ[(c ψ[x])])K j = i Jφ[ (∃x.ψ[x]) ] K j (43)

5. Conclusions, Further Directions

The move from asymmetric Lambek calculus to the symmetric Lambek-Grishin system opens
up a number of complementary perspectives on linguistic resources: terms versus contexts; im-
plications versus co-implications; call-by-value versus call-by-name computations. In LG we have
realized these dualities in a resource-sensitive and structure-sensitive way. The type we have as-
signed to Quantifier Phrases — (s � s) ; np — puts together the same pieces of information as
the NL type s/(np\s), but it ‘packages’ this information in a novel way. As a result, we have
been able to make a distinction between the local behavior of a QP, contributing an np resource
in building the antecedent structure, and its scope-taking effects, when the (s � s) component is
activated.

Our approach differs in a number of respects from the related work cited in §1. Abstracting
away from the directionality issue, de Groote’s original application of λµ calculus to scope con-
strual in [10] syntactically types a QP as np with meaning representation µα(∃ α), with α a np
continuation. As a result, a sentence with multiple QPs is associated with a unique parse/proof
term; the multiple readings for that term are obtained as a result of the non-confluence of the
λµ calculus, which is considered as a feature, not a bug. Our approach does not exploit the
non-confluence: in parsing a sentence we fix either the cbv or the cbn strategy. Scope ambiguities
are the effect of the different choices one can make as to when the connectives in a QP type are
activated. The semantic analyses based on continuations in the work of Barker and Shan are for-
mulated in the setting of ‘intuitionistic’ type-logical grammars, with a single succedent formula.
To obtain scope flexibility, these authors in [4, 28] rely on multimodal structural postulates. In
future work, we hope to investigate to what extent their analyses can be recast in terms of LG
and whether the symmetries of that system give rise to streamlined analyses.
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